您当前所在位置: 首页» 人才队伍» 高级职称» 智慧农业研究室» 正高级

王聪

发布者:管理员发布时间:2023-07-11作者:来源:点击量:

王聪,浙江宁波人,博士,现为中国农业科学院农业资源与农业区划研究所研究员。主要从事生态遥感与农业遥感领域研究,特别是针对植被物候,日光诱导叶绿素荧光(SIF)等植被/生态系统参数遥感反演算法的开发与应用。国际农业与生物科学研究中心(CABI)旗下官方期刊CABI Agriculture and Bioscience副主编(Associate Editor),《Remote Sensing》专刊编委。在遥感领域顶级期刊-环境遥感(Remote Sensingof Environment)等期刊发表SCI论文10余篇,在NASA地球观测系统数据与信息系统(EOSDIS)数据中心ORNL DAAC发表数据一套。

电子邮箱:wangcong01@caas.cn

教育背景:

2011.09-2016.07:北京师范大学地理科学学部,理学博士(导师:陈晋教授),北京

2014.09-2015.09: 日本国立环境研究所,交换留学生,日本

2007.08-2011.07: 北京师范大学物理学,理学学士,北京

工作经历:

2020.05-至今: 中国农业科学院农业资源与农业区划研究所,研究员,北京

2018.02-2020.02:伊利诺伊大学香槟分校自然资源与环境科学系,博士后研究员,美国

2017.07-2018.02:加州大学圣塔克鲁兹分校环境系,博士后研究员,美国

2017.03-2017.07: 德州大学阿灵顿分校生物系,博士后研究员,美国

2016.07-2017.02: 北京师范大学减灾与应急管理研究院,研究助理,北京

数据产品:

Wang, C., K. Guan, B. Peng, C. Jiang, J. Peng, G. Wu, C. Frankenberg et al.,(2021). High Resolution Land Cover-Specific Solar-Induced Fluorescence, Midwestern USA, 2018. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1813

学术论文:

[1] S. Wang, J. Chen, M. Shen, T. Shi, L. liu; L. Zhang, Q. Dong, C. Wang* (2022)Characterizing spatiotemporal patterns of winter wheat phenology from 1981 to 2016 in North China by improvingphenology estimation, remote sensing, 2022, 14(19).

[2] Y. Liu,Q. Yu, Q. Zhou, C. Wang,et al. (2022)Mapping the Complex Crop Rotation Systems in Southern China Considering Cropping Intensity, Crop Diversity, and Their Seasonal Dynamics. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing15: 9584-9598.

[3] S. Ge, Q. Yu, Q. Zhou, C. Wang,W. Wu, (2022)From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity. Agricultural Systems. 204, 103535.

[4] L. Zhao, W. Guo, J. Wang, H. Wang, Y. Duan, C. Wang, W. Wu (2021) An Efficient Method for Estimating Wheat Heading DatesUsing UAV Images. Remote Sens. 13, 3067.

[5]D. Xu, C. Wang, J. Chen; M. Shen, B. Shen, et al. (2021) The superiority of the normalized difference phenology index (NDPI) for estimating grassland aboveground fresh biomass.Remote Sens. Environ.264, 112578.

[6]C. Wang, K. Guan, B. Peng, C. Jiang, J. Peng, G. Wu, C. Frankenberg et al., (2021). High Resolution Land Cover-Specific Solar-Induced Fluorescence, Midwestern USA, 2018. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1813

[7] C. Wang*, K. Guan*, B. Peng, M. Chen, C. Jiang, Y. Zeng et al., (2020) Satellite footprint data from OCO-2 and TROPOMI reveal significant spatio-temporal and inter-vegetation type variabilities of solar-induced fluorescence yield in the U.S. Midwest. Remote Sensing of Environment 241:111728.

[8] W. Yang, H. Kobayashi, C. Wang, M. Shen, J. Chen, B. et al., (2019) A semi-analytical snow-free vegetation index for improving estimation of plant phenology in tundraand grassland ecosystems. Remote Sensing of Environment 228: 31-44.

[9] C. Wang and K Zhu (2019) Misestimation of Growing Season Length Due to Inaccurate Construction of Satellite Vegetation Index Time Series.IEEE Geoscience and Remote Sensing Letters16: 1185-1189.

[10] R. Cao, Y. Chen, J. Chen, M. Shen, J. Zhou, C. Wangand W. Yang (2018) A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sensing of Environment 217: 244-257

[11]X. Chen, D. Wang, J. Chen, C. Wang and M. Shen (2018) The mixed pixel effect in land surface phenology: A simulation studyRemote Sensing of Environment211: 338-344.

[12] C. Wang, J. Chen, Y. Tang, T.A. Black and K. Zhu (2018) A novel method for removing snow melting-induced fluctuation in GIMMS NDVI3g data for vegetation phenology monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing11: 800-807.

[13] Z. Yang, M. Shen, S. Jia, W. Yang, C. Wang, X. Chen, J. Chen and L. Guo (2017) Asymmetric responses of the end of growing season to daily maximum and minimum temperatures on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres 122: 13,278-13,287.

[14] C. Wang, J. Chen, J. Wu, Y. Tang, P. Shi, T.A. Black and K. Zhu (2017) A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sensing of Environment 196: 1-12.

[15] C. Wang, J. Chen and Y. Tang (2016) Plant phenological synchrony increases under rapid within-spring warming. Scientific Reports, 6: 25460.

[16] J. Chen, Y. Rao, M. Shen, C. Wang, Y. Zhou, L. Ma, Y. Tang and X. Yang (2016) A simple method for detecting phenological change from time series of vegetation index. IEEE transactions on geoscience and remote sensing. 54: 3436-3449.

[17] C. Wang, R. Cao, J. Chen, Y. Rao and Y. Tang (2015) Temperature sensitivity of spring vegetation phenology correlates to within-spring warming speed over the Northern Hemisphere. Ecological Indicators, 50: 62-68.

[18] M. Shen, Y. Tang, J. Chen, X. Yang, C. Wang, X. Cui, Y. Yang, L. Han, L. Li, J. Du, G. Zhang and N. Cong (2014) Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere. PLoS One, 9: e88178.

[19] B. Fan, L. Guo, N. Li, J. Chen, H. Lin, X. Zhang, M. Shen, Y. Rao, C. Wangand L. Ma (2014) Earlier vegetation green-up has reduced spring dust storms. Scientific Reports, 4: 6749.

部分获奖奖励:

2017,北京师范大学优秀博士学位论文








打印』『关闭