DOI: 10.1111/gcb.15681

Check for updates

PRIMARY RESEARCH ARTICLE

Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland

Weixing Liu^{1,2} \circ | Lingli Liu^{1,3} \circ | Xian Yang² \circ | Meifeng Deng¹ \circ | Zhou Wang^{3,4} | Pandeng Wang⁵ \circ | Sen Yang^{1,3} \circ | Ping Li¹ \circ | Ziyang Peng^{1,3} | Lu Yang^{1,3} | Lin Jiang² \circ

¹State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China

²School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

³University of Chinese Academy of Sciences, Beijing, China

⁴Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, China

⁵State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China

Correspondence

Lingli Liu, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China.

Email: Lingli.liu@ibcas.ac.cn

Lin Jiang, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. Email: lin.jiang@biology.gatech.edu

Funding information

Chinese Academy of Sciences, Grant/ Award Number: XDA26010303; National Natural Science Foundation of China, Grant/Award Number: 31770530 and 31370488; Chinese National Key Development Program for Basic Research, Grant/Award Number: 2017YFC0503900; National Science Foundation of the United States, Grant/Award Number: DEB-1856318 and CBET-1833988

Abstract

Anthropogenic nitrogen (N) input is known to alter plant and microbial α -diversity, but how N enrichment influences β-diversity of plant and microbial communities remains poorly understood. Using a long-term multilevel N addition experiment in a temperate steppe, we show that plant, soil bacterial and fungal communities exhibited different responses in their β-diversity to N input. Plant β-diversity decreased linearly as N addition increased, as a result of increased directional environmental filtering, where soil environmental properties largely explained variation in plant β-diversity. Soil bacterial β -diversity first increased then decreased with increasing N input, which was best explained by corresponding changes in soil environmental heterogeneity. Soil fungal β-diversity, however, remained largely unchanged across the N gradient, with plant β-diversity, soil environmental properties, and heterogeneity together explaining an insignificant fraction of variation in fungal β -diversity, reflecting the importance of stochastic community assembly. Our study demonstrates the divergent effect of N enrichment on the assembly of plant, soil bacterial and fungal communities, emphasizing the need to examine closely associated fundamental components (i.e., plants and microorganisms) of ecosystems to gain a more complete understanding of ecological consequences of anthropogenic N enrichment.

KEYWORDS

community assembly, deterministic processes, environmental heterogeneity, N deposition, stochastic processes, β -diversity