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A B S T R A C T

Over the last decade, a series of global moderate resolution leaf area index (LAI) products have become available
and been widely applied in many disciplines. At the same time, there is an increasing demand for the un-
certainties associated with these products, which has to be determined through rigorous validation studies. This
study validated seven global LAI products — EPS, GEOV2, GLASS, GLOBMAP, MODIS, PROBA-V, and VIIRS —
over typical agricultural croplands in northeastern China. Seasonal continuous LAI measurements were obtained
from field campaigns in paddy rice fields in 2012 and 2013, and in maize, soybean, and sorghum fields in 2016.
High resolution reference LAI maps were first derived from HJ-1, Landsat 7, and Sentinel-2A images with the
look-up table (LUT) inversion method and were evaluated with the field measured LAI (R2= 0.85 and
RMSE=0.66). Subsequently, the moderate resolution LAI products were validated with the upscaled high re-
solution reference LAI.
All LAI products show typical seasonal variation patterns of agricultural crops, but distinct differences exist

among the products. The product quality indicators show large deviations during the peak growing season,
whereas the relative uncertainties are higher during the green-up and senescent phases. Both EPS and GLASS
show some saturation effects at LAI ~ 4.0 and underestimate the reference LAI (>0.5), whereas GLOBMAP
shows the largest overestimation (bias= 0.96). GEOV2 and PROBA-V significantly overestimate the LAI for all
crops. In contrast, MODIS and VIIRS underestimate and show high variations (RMSE >1.50, RRMSE >47%)
compared with the reference LAI. In general, the global moderate resolution LAI products show moderate
agreement with the reference LAI (RMSE: 0.80–2.0 and RRMSE: 25–60%). The product uncertainties are higher
over paddy rice fields than those over the other crop fields. The uncertainties are mainly attributed to the lack of
regional tuning of the global algorithms for agricultural crops at different growth stages. Further algorithm
improvement and validation studies are necessary to improve the global LAI products for regional applications.

1. Introduction

Leaf area index (LAI) is one of the essential climate variables de-
fined by the Global Climate Observing System (GCOS) for improving
the parameterization of the land surface-atmosphere interaction pro-
cesses in a range of models (GCOS, 2016). Over the last decade, a
number of global LAI products with different spatial and temporal
characteristics have become available, e.g., EPS (García-Haro et al.,
2018), GEOV2 (Baret et al., 2013), GLASS (Xiao et al., 2014),
GLOBMAP (Liu et al., 2013), MODIS (Huang et al., 2008; Myneni et al.,
2002), PROBA-V (Baret et al., 2016), and VIIRS (Yan et al., 2018).
These products have been vital in providing input to terrestrial

ecosystem and land-surface models (Fang et al., 2019).
To properly use the LAI products in various models, it is critical to

understand and quantify the uncertainties associated with the products
(Lafont et al., 2012; Morisette et al., 2006). The meteorological and
environmental science communities have stressed the need for global
and long-term validated estimates of LAI. The accuracy is expected to
be a maximum of 20% or 0.5 in relative and absolute terms, respec-
tively (GCOS, 2011). Furthermore, GCOS has updated the requirement
for the relative uncertainties to a maximum of 15% (GCOS, 2016).

Many LAI products provide qualitative quality flags (QQF) and
quantitative quality indicators (QQI), which contain important in-
formation about product status and uncertainties (Baret et al., 2013;
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García-Haro et al., 2018; Yan et al., 2018). The QQF layer is categorical
and generally describes the product processing status. The QQI layer
represents the product theoretical precision caused by uncertainties in
the input data, model imperfections, and the inversion process (Fang
et al., 2013). The quantitative uncertainty estimates are particularly
useful in data assimilation studies with land surface models (Barbu
et al., 2014; Boisier et al., 2014). However, it has been noted that the
theoretical precisions only represent the algorithm problems and are
unable to fully represent the product uncertainties (Fang et al., 2013).
Validation of the LAI products is therefore critical to evaluate whether
the LAI products can meet the accuracy requirement proposed by the
application community.

Direct validation of moderate resolution LAI products corresponds
to the comparison of temporally and spatially concurrent satellite
products with an up-scaled in situ reference LAI (Fernandes et al.,
2014). Over the last decade, a number of comprehensive LAI validation
studies have been performed for a variety of land cover types (Claverie
et al., 2013; Fang et al., 2013; Fang et al., 2012; Garrigues et al., 2008b;
Stern et al., 2014). Most of these validation studies are conducted under
the framework of the Land Product Validation (LPV) subgroup of the
Committee on Earth Observation Satellites (CEOS) (http://lpvs.gsfc.
nasa.gov/). The major goal of LPV is to ensure thematic and quantita-
tive compatibilities across products and reference datasets through
commonly accepted protocols.

The goal of global validation studies is to provide product quality
information for different biome types on a global scale. The global
studies emphasize the global distribution and representativeness of the
reference sites, but generally, do not provide an in-depth assessment of
the product quality for a particular ecosystem at a regional scale (Fang
et al., 2012; Garrigues et al., 2008a; Gessner et al., 2013). In parallel to
the ongoing global studies, there is a need to conduct validation studies
for specific ecosystem types at a regional scale. Moreover, current va-
lidation studies are usually based on a static comparison of different LAI
values from different biome types. This kind of snapshot comparison
would be limited for homogeneous regions with small spatial varia-
tions. In these regions, a time series validation is necessary using all LAI
data obtained over the whole season (Fang et al., 2019). Nevertheless,
the lack of intensive in situ measurements and satellite data have
hampered the effective evaluation of existing LAI products (Garrigues
et al., 2008a; Weiss et al., 2007). Only a few studies have validated the
time series of moderate resolution LAI products at a regional scale
(Claverie et al., 2013; Ogutu et al., 2011; Weiss et al., 2007).

The crop ecosystem is complicated because of the heterogeneity of
field conditions, the diversity of crop types, the human impact (e.g.
fertilizing and irrigating) on LAI dynamics, and the requirement of high
temporal resolution LAI for agricultural monitoring and diagnosis.
Compared to other biome types, global LAI measurements have been
limited for crops (Baret et al., 2006; Fang et al., 2012). The reference
data in existing studies are usually based on either a small number of
sites or a local landscape, which only provide field information for a
small area and a limited time (Claverie et al., 2013; Garrigues et al.,
2008a). Therefore, it is critical to obtain time series of field LAI mea-
surements for LAI product validation studies over croplands. Moreover,
the time-series of LAI measurements will provide key information about
the field nutrient conditions, as well as the water, energy, and carbon
dynamics.

Unlike other crop types, paddy rice is grown in flooded fields; thus,
the water background may affect the spectral response of the rice and
the estimated LAI (Sun et al., 2017). Unfortunately, paddy rice is under-
represented in the parameterization of radiative transfer models and in
the training process of LAI inversion algorithms for global LAI pro-
duction. In comparison to other crop types, the validation and knowl-
edge about LAI product quality are particularly deficient for paddy rice
fields (Fang et al., 2014; Urrutia, 2010). Field LAI measurements for
paddy rice are, comparatively, lacking. Moreover, the uncertainties in
the limited measurements available are difficult to quantify because of

the diverse environmental conditions and sampling and measurement
methods employed (Fang et al., 2014). Currently, the reference LAI is
mainly derived from high resolution imagery based on empirical re-
lationships with spectral reflectance or vegetation index (Kimura et al.,
2004; Shibayama et al., 2011; Vaesen et al., 2001). The empirical
models are usually site-dependent and require a large amount of data to
build a reliable model for validation purpose (Casanova et al., 1998;
Shibayama and Akiyama, 1989).

To address the issue of inadequate ground measurements, LAI
measurements were taken continuously for several growing seasons in
paddy rice, maize, soybean, and sorghum fields in northeastern China
(Fang et al., 2014; Fang et al., 2018). The fields are large and homo-
geneous, and the field data were collected following recommended
guidelines with standard industry instruments. Comparisons were made
between the seasonal LAI trajectories obtained by the destructive and
optical measurement methods (Fang et al., 2014; Fang et al., 2018).
After quality checks, the data have been made available to the public.
The time series data measured in situ provide a remarkable opportunity
to carry out a systematic time series validation for the global LAI pro-
ducts over the croplands.

The objective of the study is to validate a suite of recent LAI pro-
ducts derived from moderate resolution satellite data. This study pro-
vides one of the first intensive validation studies for seven LAI products
— EPS, GEOV2, GLASS, GLOBMAP, MODIS, PROBA-V, and VIIRS —
over croplands in northeastern China. The reference LAI maps were first
retrieved from high resolution HJ-1, Landsat 7, and Sentinel-2A data
using a physically based canopy reflectance model, and the results were
compared with field data. The reference maps were then aggregated
and compared with the moderate resolution LAI products. This study
intends to address several crucial questions as follows: (1) What are the
uncertainties in current LAI products as compared to high resolution
reference LAI? (2) How do the current moderate resolution LAI pro-
ducts compare under different crop ecosystems? (3) What are the major
reasons for the differences, if any, among the various LAI products and
the uncertainties within the products? (4) What are the possible mea-
sures towards improving the LAI estimation for crops?

2. Study area and data

2.1. Study area and field data

Data from two sites (Honghe and Hailun) in the Heilongjiang pro-
vince, northeastern China, were used in this study. The first site (cen-
tered at 47°39′N, 133°31′E) is located in paddy rice (Oryza sativa L.)
fields in the Honghe farm (Fang et al., 2014), and the second site
(47°24′–47°26′N, 126°47′–126°51′E) is planted with maize (Zea mays
L.), soybean (Glycine max L.), and sorghum (Sorghum bicolor) in the
Hailun city (Fang et al., 2018) (Fig. 1).

The Honghe site has a typical temperate humid continental mon-
soon climate, with a mean annual air temperature of 1.9 °C. The annual
average precipitation is around 500–650mm, with 60% of the pre-
cipitation occurring from June to September. The study site covers a
total area of approximately 30 km2 and has an average elevation of
approximately 54m above sea level. A single rice variety is normally
transplanted in late May, and the dates for the flowering, grain filling,
and maturity stages are in early-July, early August, and early
September, respectively. Five plots, measuring 400m×600m each,
were selected in 2012 and 2013 (Table 1). Field LAI measurements
were performed weekly from June 11 (day of year (DOY 163)) to
September 17 (DOY 261) in 2012, and from June 22 (DOY 173) to
August 27 (DOY 239) in 2013. To reduce the impact of destructive
sampling and measurement disturbance, a moving sampling strategy
was used (Fang et al., 2014). According to this strategy, four elementary
sampling units (ESUs) within a plot were first selected for LAI mea-
surement. The group of used ESUs was discarded in the next mea-
surement while another four parallel ESUs were used. Approximately
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50 to 60 ESUs of 20m×20m each were sampled within each plot. All
ESU measurements within a plot measured with LAI-2200 (LI-COR Inc.,
Lincoln, Nebraska, USA) were averaged to represent the plot LAI (Fang
et al., 2014).

The Hailun site has a similar cold temperate continental monsoon
climate, with an mean annual air temperature of 2 °C. The annual
average precipitation ranges from 500mm to 600mm, with 60–70% of
the precipitation occurring from June to August. The study site has an
elevation of approximately 200–240m above sea level and covers an
area of approximately 30 km2. The main crops are maize, soybean, and
sorghum. The maize is usually planted in early May, and the dates for
tasseling, milking, and mature stages are in the end of late July, late
August, and late September, respectively. The soybean and sorghum
show similar growth patterns to the maize, but the soybean matures in
early September (Fang et al., 2018). Five crop plots, measuring
100m×500m each, were chosen for continuous LAI measurements
(Table 1). Three representative ESUs of approximately 20m×20m
each were selected in every plot. Field LAI measurements were carried
out weekly at each plot from June 20 (DOY 172) to September 22 (DOY
266) in 2016 (Fang et al., 2018).

In both Honghe and Hailun sites, field measurements were carried
out during twilight and overcast conditions to avoid direct sun flecks. In
both sites, the effective plant area index (PAIeff) values obtained from
LAI-2200 are in good agreement with the true LAI values obtained from
the destructive leaf sampling method for most of the growing season
from DOY 160 to 230 (Fang et al., 2014; Fang et al., 2018). Thus, the
LAI-2200 measurements were considered as the true LAI values and
used in the validation study.

In addition to the canopy structural measurement, field reflectance
data were acquired at several homogenous sites (>60m×60m in
size) with an AvaField 3 spectroradiometer (Avantes, Apeldoorn, The
Netherlands) over the Honghe area in June and July 2013, respectively
(Table A1). The measurements were conducted between 9:00 AM and
12:00 AM local time. The radiometer was held about 1m above the

ground surface and operated in the reflectance mode with a 25° field of
view pointing at the nadir direction. Usually 50–100 sampling points
were collected at each site and the average reflectance of the sampling
points was used to represent the mean reflectance of the site. The
measured surface reflectance data were resampled to the HJ-1 spectral
bands using the spectral response functions.

2.2. Moderate resolution LAI products

Table 2 lists the moderate resolution LAI products evaluated in this
study. Table 3 shows the product quality control information and the
range of the values.

2.2.1. EPS LAI
The EUMESAT Polar System (EPS, V1.0) LAI is generated on a 10-

day basis at the spatial resolution of 1.1 km from the AVHRR sensor
onboard the Meteorological–Operational (MetOp) satellite constellation
(García-Haro et al., 2018). The PROSAIL radiative transfer model (Feret
et al., 2008; Verhoef and Bach, 2007) is first run to build a database of
three shortwave reflectances (red, near infrared (NIR), and shortwave
infrared (SWIR)) and associated biophysical parameters. A non-linear
Gaussian process regression (GPR) multi-output algorithm is trained for
the retrieval of LAI from the normalized spectral reflectance factor
derived from a parametric bidirectional reflectance distribution func-
tion (BRDF) model. The LAI product is expressed in the range from 0 to
7. A quantitative uncertainty estimate is derived based on the theore-
tical model assumptions and the statistical uncertainties in the ob-
servations and the model parameters (García-Haro et al., 2018).

2.2.2. GEOV2 LAI
The GEOV2 (V2.0) LAI is derived through the Geoland2/BioPar

project from the SPOT/VEGETATION (SPOT/VGT) and the PROBA-V
(GEOV2/PV) observations at 1/112° and a 10-day step. When the
SPOT/VGT mission ended in May 2014, the GEOV2/VGT algorithm was
adapted and applied to the PROBA-V data (GEOV2/PV). The MODIS
(V5) and CYCLOPES products are first combined to generate the best
LAI estimates (Baret et al., 2013). A neural network training process is
performed between the fused LAI and the SPOT/VEGETATION and
PROBA-V daily reflectance data over the global BELMANIP sites (Baret
et al., 2006). The landscape level clumping is accounted for in CYCL-
OPES through the separation of pure vegetation and bare soil in the
pixels (Baret et al., 2007). A multi-step filtering approach, based on an
iterative upper envelope process and expert knowledge on the expected
seasonality, was applied to eliminate noisy data mainly affected by
atmospheric effects and snow cover (Verger et al., 2014b). The quan-
titative uncertainties are computed using the training dataset to reflect
the sensitivity of the product to the input reflectance values.

Fig. 1. Location of the study sites in Hailun (left) and Honghe (right), northeastern China (middle). The field plots are marked in red triangles. Left: Sentinel-2A MSI
(665 nm, August 02, 2016); middle: MOD09A1 MODIS reflectance (620–670 nm, July 19, 2016); right: HJ-1 CCD (630 nm–690 nm, June 24, 2013)). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Location of the plots and crop types in the Honghe and Hailun study sites for
field LAI measurements with LAI-2200.

Plot Honghe (2012, 2013) Hailun (2016)

Latitude Longitude Crop Latitude Longitude Crop

A 47.667°N 133.515°E Rice 47.410°N 126.838°E Maize
B 47.663°N 133.532°E Rice 47.405°N 126.838°E Soybean
C 47.653°N 133.523°E Rice 47.401°N 126.805°E Soybean
D 47.637°N 133.515°E Rice 47.409°N 126.798°E Maize
E 47.637°N 133.534°E Rice 47.429°N 126.801°E Sorghum
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2.2.3. GLASS LAI
The Global LAnd Surface Satellite (GLASS, V3.1) LAI is estimated

from the MODIS reflectance data using a general regression neural
network (GRNN) approach (Xiao et al., 2014). The ‘effective’ CYCLO-
PES LAI (LAIeff) is first converted to the true value using the clumping
index (Ω) derived from the POLDER data (Chen et al., 2005):

=LAI LAI /eff (1)

After transformation, the MODIS and CYCLOPES LAI data are in-
tegrated in a weighted linear combination to obtain the best LAI esti-
mate. The original MODIS reflectance data (MOD09A1) are reprocessed
to remove cloud contamination, and the missing gaps are filled to ob-
tain continuous and smooth data (Tang et al., 2013). A neural network
is trained for each biome type using the combined LAI and the re-
processed MODIS reflectance data over the BELMANIP sites (Baret
et al., 2006). The yearly LAI profiles are estimated using the trained
GRNNs from the reprocessed MODIS reflectance data over an entire
year (Xiao et al., 2014).

2.2.4. GLOBMAP LAI
The GLOBMAP (V3.0) LAI is derived by integrating the MODIS and

AVHRR observations (Liu et al., 2012). The effective LAI is first gen-
erated from the MODIS land surface reflectance data (MOD09A1) based
on land cover-specific LAI-vegetation index relationships simulated
from a 4-scale geometrical optical model (Chen and Leblanc, 1997;
Deng et al., 2006). The effective LAI is then converted to the true LAI
using the 500m global clumping index data derived from MODIS (He
et al., 2012). The pixel level relationships are established between the
true LAI and the vegetation indices for AVHRR and MODIS during their
overlapping period. The relationships are then utilized to estimate the
long term pixel level LAI for both AVHRR and MODIS over the non-

overlapping periods. The 8-day and 500m LAI product used in this
study is derived from the cloud masked MODIS reflectance data (Liu
and Liu, 2013). The cloud contaminated pixels are removed by a locally
adjusted cubic spline filtering approach (Chen et al., 2006).

2.2.5. MODIS LAI
The MODIS version 6 (V6) product (MCD15A2H), acquired from the

combined Terra and Aqua platforms, is generated every 8 days in a
500m spatial resolution (Myneni et al., 2015). The product is derived
from a 3-D radiative transfer model using the look-up table (LUT)
method (Knyazikhin et al., 1998a; Knyazikhin et al., 1998b). The mean
LAI value averaged over all acceptable estimates is taken as the solu-
tion, and the standard deviation of the candidate LAI values obtained
from the LUT method serves as a measure of the precision of the so-
lution. In addition to the main LUT method, a backup algorithm is
constructed based on the empirical relationship between LAI and nor-
malized difference vegetation index (NDVI) for different biome types
(Myneni et al., 1997). The V6 LAI algorithm uses the version 5 (V5) red
and NIR daily surface reflectance data (MOD09GA, 500m) and the
multi-year land cover product (MCD12Q1, 500m) (Yan et al., 2016a;
Yan et al., 2016b). Companion LAI products have also been derived
separately from the MODIS sensors onboard the Terra (MOD15A2H, 8-
day) and Aqua (MYD15A2H, 8-day) platforms every 8 days, and also
from the two platforms jointly every 4 days (MCD15A3H).

2.2.6. PROBA-V LAI
The PROBA-V (V1.0) LAI is distributed with a 10-day temporal

sampling and 300m spatial resolution through the Global Land Service
of the European Commission's Copernicus program. The neural net-
works are trained from the best LAI estimates obtained by fusing and

Table 2
Moderate resolution LAI products investigated in the study. LUT, NIR, NN, SWIR, SZA, and VI stand for look-up table, near-infrared, neural network method,
shortwave infrared, solar zenith angle, and vegetation index, respectively.

Producta Sensor Spatial
resolution

Temporal
resolution

Algorithm Period Uncertainty
provided

Reference

EPS
(V1.0)

AVHRR/MetOp 1.1 km 10-day Gaussian process regression
(red, NIR, SWIR)

2015.1+ Yes García-Haro et al.
(2018)

GEOV2
(V2.0)

VEGETATION/SPOT
(1999.1–2013.12)
PROBA-V (2014+)

1/112° 10-day NN (red, NIR, SWIR,
observation geometry)

1999.1+ Yes Verger et al. (2014a)

GLASS
(V3.1)

MODIS/Terra 500m 8-day NN (red, NIR) 2000+ No Xiao et al. (2014)

GLOBMAP
(V3.0)

MODIS/Terra 500m 8-day Empirical VI-LAI relationship 2000+ No Liu et al. (2012)

MODIS
(V6)

MODIS/Terra+Aqua 500m 8-day LUT (red, NIR) 2002.7+ Yes Yan et al. (2016a,
2016b)

PROBA-V
(V1.0)

PROBA-V 300m 10-day NN (blue, red, NIR, observation
geometry)

2014.1+ Yes Baret et al. (2016)

VIIRS
(V1.0)

VIIRS/SNPP 500m 8-day LUT (red, NIR) 2012.1+ Yes Yan et al. (2018)

a EPS (https://landsaf.ipma.pt/en/products/vegetation/), GEOV2 (http://land.copernicus.eu/global/products/lai), GLASS (http://glass.umd.edu/ or http://glass-
product.bnu.edu.cn/), GLOBMAP (http://modis.cn/globalLAI/), MODIS (https://earthdata.nasa.gov/), PROBA-V (http://land.copernicus.eu/global/products/lai),
VIIRS (https://earthdata.nasa.gov/).

Table 3
Quality control measures in processing the LAI products. QQFs: qualitative quality flags, QQIs: quantitative quality indicators.

Product Data format QQFs QQIs Quality controla Usage in the study

EPS HDF LAI_QF LAI_err QQF= (0) “No suspect” values only
GEOV2 NetCDF LAI-QFLAG RMSE LAI= 0–210 Valid retrieval between 0 and 7
GLASS HDF Unspecified LAI= 0–1000 Valid retrieval between 0 and 10
GLOBMAP HDF Unspecified All retrievals
MODIS HDF FparLAI_QC LaiStdDev QQF= (000, 001) Main retrievals
PROBA-V NetCDF QFLAG RMSE LAI= 0–210 Valid retrieval between 0 and 7
VIIRS HDF FparLAI_QC LaiStdDev QQF= (000, 001) Main retrievals

a Numbers in the brackets indicate the bit combinations of QQF.
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scaling the MODIS V5 and the CYCLOPES V3.1 products (Baret et al.,
2016). Different from the method employed in GEOV2, a non-linear
weighting function is used to fuse the MODIS and CYCLOPES LAI
products. The trained neural network is applied to retrieve the LAI from
the top of aerosol PROBA-V reflectance data. The instantaneous LAI
estimates are temporally smoothed and composited to generate the 10-
day product. The quality control strategy employed in PROBA-V is si-
milar to that in GEOV2.

2.2.7. VIIRS LAI
The VIIRS sensor is onboard the Suomi National Polar-orbiting

Partnership (SNPP) satellite, which is an interim satellite between the
Earth Observation System (EOS) and the Joint Polar Satellite System
(JPSS) satellites. The VIIRS algorithm is inherited from the MODIS, but
with VIIRS-specific parametrization (Yan et al., 2018). Similar to the
MODIS, the VIIRS LAI (V1.0) is generated every 8 days in 500m re-
solution, with the goal to develop a continuous and consistent Earth
System Data Records (ESDRs). The VIIRS quality layer is also similar to
that of the MODIS. Preliminary comparison of VIIRS and MODIS has
shown that the two products are generally consistent (Yan et al., 2018).

2.3. High resolution remote sensing data

Three types of high resolution images were used in order to obtain
sufficient number of time series data to match with the moderate re-
solution LAI products. Twelve cloud free HJ-1 images were obtained
over the growing seasons in 2012 and 2013 at the Honghe site
(Table 4). Additionally, seven cloud free HJ-1 images were obtained in
2016 at the Hailun site. The HJ-1A and HJ-1B satellites were launched
on September 6, 2008. Both satellites contain a Wide View CCD (WVC)
camera, which collects data in four bands from 430 to 900 nm with a
30m spatial resolution and a repeat cycle of 4 days. The data are
available from the China Centre for Resources Satellite Data and Ap-
plication (CRESDA, http://218.247.138.119:7777/DSSPlatform/index.

html).
Two clear Landsat 7 ETM+ imagery (path 118/row 27) dated on

August 13 and August 29, 2016 were downloaded from the United
States Geological Survey (USGS) EarthExplorer (https://earthexplorer.
usgs.gov/). The ETM+ data (30m) had been corrected for atmospheric
effects using the Landsat Surface Reflectance Code (LaSRC) that in-
cludes an image based spatially explicit aerosol retrieval (Vermote
et al., 2016).

Two cloud free Sentinel-2A multi-spectral instrument (MSI)
Level-1C (MSIL1C) images (tile 51T-YN) on August 2 and September 18,
2016 were downloaded from the Copernicus Open Access Hub (https://
scihub.copernicus.eu/). The MSIL1C imagery have been ortho-rectified
and geo-registered with sub-pixel accuracy. The Sen2Cor atmospheric
correction software (Version 2.5.5) (Müller-Wilm, 2018) was used to
convert the MSI data to surface reflectance. The MSI 10-m red band was
resampled to match the 20m NIR band using the nearest neighbor
resampling method in the Sentinel Application Platform (SNAP 6.0,
http://step.esa.int/main/toolboxes/snap/). For both ETM+ and MSI
sensors, the viewing angles were <10° from the vertical direction.

3. Methods

Morisette et al. (2006) proposed a standard protocol for validating
moderate scale (1 km) LAI products using field measurements (e.g. LAI-
2200) combined with higher resolution (<30m) remote sensing data.
The commonly applied upscaling validation approach, as recommended
by the CEOS LPV subgroup (Fernandes et al., 2014), was adopted in this
study. The approach has three main steps (Fig. 2): (1) processing of high
resolution images, (2) estimation of a reference LAI from the high re-
solution images, and (3) comparison of the moderate resolution LAI
products with the upscaled high resolution reference LAI values. This
procedure allows the construction of aggregated reference LAI maps to
account for the spatial heterogeneity within the moderate resolution
pixels.

Table 4
Information of the high resolution and the corresponding moderate resolution data used in the validation studya. AOD: aerosol optical depth, DOY: day of the year,
HR: high resolution, L7: Landsat 7, S2A: Sentinel-2A.

Date (DOY) Sun zenith Sun azimuth View zenith View azimuth AOD HR sensor EPS (MM/
DD)

GEOV2/PROBA-
V

GLASS/GLOBMAP/MODIS/VIIRS
(DOY)

(a) Honghe (12)
2012/06/19 (171) 27.0 148.4 31.3 285.8 0.44 HJ-1B CCD1 06/20 169
2012/06/24 (176) 28.7 140.7 3.5 282.8 0.71 HJ-1A CCD1 06/20, 06/30 169
2012/06/29 (181) 30.9 133.8 23.1 98.8 0.30 HJ-1B CCD2 06/30 177
2012/07/19 (201) 30.1 147.5 30.4 285.8 0.37 HJ-1B CCD1 07/20 201
2012/07/25 (207) 33.5 133.1 32.3 97.7 0.07 HJ-1B CCD2 07/20, 07/31 201
2012/08/13 (226) 38.1 139.3 23.5 98.6 0.21 HJ-1B CCD2 08/10 225
2012/08/30 (243) 43.3 145.4 18.8 98.3 0.22 HJ-1B CCD2 08/31 241
2012/09/16 (260) 48.9 150.3 17.3 99.1 0.08 HJ-1B CCD2 09/10, 09/20 257
2013/06/24 (175) 33.1 127.9 9.3 99.2 0.38 HJ-1B CCD2 06/20, 06/30 169
2013/07/06 (187) 31.1 132.2 13.5 284.2 0.05 HJ-1B CCD1 06/30, 07/10 185
2013/07/15 (196) 34.8 128.7 8.0 97.6 0.15 HJ-1A CCD2 07/10, 07/20 193
2013/08/27 (239) 42.8 144.9 26.8 284.8 0.05 HJ-1A CCD1 08/31 233

(b) Hailun (11)
2016/06/27 (179) 31.9 129.9 9.7 99.5 0.13 HJ-1B CCD2 07/05 06/30 177
2016/07/05 (187) 29.3 140.3 29.4 285.3 0.22 HJ-1A CCD1 07/05 06/30, 07/10 185
2016/07/14 (196) 32.1 135.1 12.1 284.3 0.06 HJ-1B CCD1 07/15 07/10, 07/20 193
2016/07/26 (208) 35.2 133.9 3.0 96.5 0.40 HJ-1B CCD2 08/05 07/20, 07/31 201
2016/07/31 (213) 33.8 142.6 30.3 285.9 0.15 HJ-1B CCD1 08/05 07/31 209
2016/08/02 (215) 31.8 157.7 6.1 301.5 0.45 S2A MSI 08/05 07/31, 08/10 209
2016/08/13 (226) 36.3 148.5 0.0 0 0.05 L7 ETM+ 08/15 08/10 225
2016/08/20 (233) 40.3 142.6 8.0 284.5 0.06 HJ-1B CCD1 08/25 08/20 233
2016/08/29 (242) 41.0 152.9 0.0 0 0.05 L7 ETM+ 09/05 08/31 241
2016/09/18 (262) 47.6 162.0 8.8 96.8 0.06 S2A MSI 09/25 09/10, 09/20 257
2016/09/22 (266) 50.6 152.6 8.3 284.5 0.29 HJ-1B CCD1 09/25 09/20, 09/30 265

a
Units for the sun zenith and azimuth and view zenith and azimuth angles are in degrees. The aerosol data are from the MODIS atmospheric L2 aerosol product

(MOD04_L2.006). Note the EPS date in the file name corresponds to the last day of a 20-day compositing period, the GEOV2/PROBA-V date indicates the reference
date (usually the middle) over a compositing window, and the GLASS/GLOBMAP/MODIS/VIIRS DOY marks the first day of an 8-day period in the naming.
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3.1. Processing of HJ-1 data

All HJ-1 images were first rectified with second-degree polynomials
to the Landsat 7 ETM+ images because of the same georeference
system adopted by Landsat 7 and MODIS. At least 15 ground control
points (GCPs) were used for each scene and the room mean square error
(RMSE) is below 15m (0.5 pixel). After registration, the HJ-1 raw ra-
diance was atmospherically corrected and transformed to surface re-
flectance with the 6S (Second Simulation of the Satellite Signal in the
Solar Spectrum) software (http://6s.ltdri.org/). 6S is an advanced ra-
diative transfer code designed to simulate the reflection of solar ra-
diation by a coupled atmosphere-surface system for a wide range of
atmospheric, spectral, and geometrical conditions (Kotchenova et al.,
2006; Vermote et al., 1997). A subarctic summer atmospheric model
and a continental aerosol type were used to run 6S. The aerosol optical
depth (AOD) data were obtained from the MODIS Level-2 atmospheric
aerosol product (MOD04_L2.006) (Levy et al., 2015). Other parameters
were set to the default values of the 6S input parameters. After atmo-
spheric correction, the HJ-1 red and NIR reflectance data were first
compared with the ground measured reflectance data over the Honghe
area. Subsequently, the high resolution reflectance data were ag-
gregated to 500m and compared with the daily MODIS reflectances
(MOD09GA, V6, 500m) (Vermote, 2015). The MOD09GA daily product
provides the reflectance data in 7 channels from 450 nm to 2100 nm
from the MODIS sensor on board the Terra platform (Vermote, 2015).

3.2. Derivation of the high resolution reference LAI

In this study, the LUT approach was used to invert the LAI from the
high resolution reflectance data in the red and NIR bands. The main
advantage of the LUT inversion is its efficiency in the parameter pre-
diction procedure (Darvishzadeh et al., 2008; Li and Fang, 2015). A
turbid medium canopy reflectance model, ACRM (Kuusk, 2001), was
first simulated to generate a database between canopy reflectance and
various input parameters (Table 5). ACRM assumes a homogeneous
layer of crop canopy and simulates the bidirectional canopy reflectance
at 10 nm (Kuusk, 2001). The values of solar zenith and azimuth angles
and view zenith and azimuth angles were extracted from the high re-
solution satellite products in Table 4. The Angstrom turbidity factor (β)
was derived based on the variation of AOD (τ) with wavelength (λ, μm)
(Ångström, 1961):

=( ) (2)

where k is a function of concentration and particle size distribution
(k≈1.4). The same MODIS AOD product (MOD04_L2.006) used for HJ-
1 atmospheric correction was also applied here (Levy et al., 2015). The
angular distribution of leaves was assumed to be elliptical with an ec-
centricity of 0.98 and average leaf inclination angles (ALA) of 80° and
60° for paddy rice and other crops, respectively. The model sensitivity
to the hot spot parameter is generally low for view directions that are
away from the hot spot direction (Bacour et al., 2002). Therefore, the
hot spot parameter was set as the average (sL= 0.5) of the field values
(Li et al., 2003). In ACRM, the spectra of leaf reflectance and

Fig. 2. Flow chart of the study.
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transmittance are computed using the leaf optics model PROSPECT
(Feret et al., 2008). The effective number of layers in a leaf (1.55) and
the refraction ratio of leaf surface to air (0.9) were set to fixed values (Li
et al., 2003). The chlorophyll content, leaf water thickness, dry matter
content, and anthocyanins were selected as a percentage of the specific
leaf weight (SLW) (Table 5).

The pre-season satellite reflectance data were used to represent the
stationary background properties. The paddy rice fields in Honghe
consist of a slab of water overlying the soil. The mean reflectance ex-
tracted from MODIS on May 8, 2012 (DOY 129), when the field was
flooded, was used to represent the standardized background reflectance
over the season. For the crops in Hailun, the Landsat 8 OLI reflectance
on June 2, 2016, was used to represent the standardized background
reflectance. This approach is similar to the method by Casanova et al.
(1998) and the procedure in the Discrete Anisotropic Radiative Transfer
(DART) simulation (Gastellu-Etchegorry et al., 2015). The total number
of records in the database is over 608,000 and 438,000 for the Honghe
and Hailun sites, respectively.

The LUT inversion process is based on a direct comparison of the
observed satellite spectra and the simulated spectra through a cost
function (J):

=
=

J 1
N i 1

N
i
obs

i
sim

i
obs

2

(3)

where N is the total number of bands used in the inversion (N=2 for
red and NIR bands), and ρiobs and ρisim are the observed and simulated
reflectance on band i, respectively. The first 100 records with the
smallest J values were selected, and the corresponding LAI values
averaged as the reference LAI for each pixel.

3.3. Evaluation and validation of the LAI products

Five LAI products have specific QQF and QQI layers embedded in
the products (Table 3). The product quality control information was
first explored. The LAI products from 2010 to 2017 were first inter-
compared. The four companion MODIS products from different plat-
forms and temporal composites, consisting of MCD15A2H (Terra +
Aqua, 8-day), MCD15A3H (Terra + Aqua, 4-day), MOD15A2H (Terra,
8-day), and MYD15A2H (Aqua, 8-day), were also examined.

Using a bilinear interpolation method, the high resolution reference
LAI data were spatially averaged to the corresponding spatial resolu-
tions of different LAI products (Table 2). Subsequently, the moderate
resolution LAI products were validated with the upscaled reference LAI

in a 3×3 pixel comparison mode that allows the effects of point spread
function and geometric distortion to be limited. In addition, some al-
ternative validation schemes were also investigated: (1) a direct pixel
level comparison between the satellite LAI and the upscaled reference
LAI for the corresponding pixels, (2) a site level comparison of the
average satellite and field LAI values for the corresponding dates, and
(3) a plot level comparison of the satellite and field LAI values averaged
over the plots. The coefficient of determination (R2), bias, RMSE, and
relative RMSE (RRMSE) values were calculated for all the different
schemes. During the procedure, cloudy pixels were masked out, and
only good quality data were used in the validation (Table 3). For
GEOV2, GLASS, and PROBA-V, only LAI data from the valid retrievals
were considered (Table 3). The MODIS and VIIRS LAI data were ex-
tracted from the main retrieval algorithm. The EPS pixels marked as “no
suspect” were included in the comparison, whereas all valid GLOBMAP
retrievals were used. All comparisons were made based on the MODIS
sinusoidal projection system.

4. Results

4.1. High resolution reference LAI

Fig. 3 shows that the high resolution HJ-1 reflectance agrees well
with the field measured data over the Honghe area, with small bias
(0.004) and RMSE values (0.05). The small underestimation of an
outlier rice point (0.49, 0.33) is attributed to the scale differences be-
tween the field measurement and the HJ-1 pixel. The aggregated HJ-1
reflectance data show very high correspondence with the MODIS re-
flectance, with very high R2 (>0.93) and low bias (<0.012) and RMSE
(<0.05) values for the Honghe and Hailun sites (Fig. 4). In most cases,
the reflectance falls close to the 1:1 line. The relationship becomes more
scattered for the NIR reflectance at the Hailun site from DOY 200 to 240
(Fig. 4b & c). This observation is mainly attributed to the mixed ground
cover types revealed in the high resolution images.

The high resolution LAI data estimated from the HJ-1 WVC, Landsat
7 ETM+, and the Sentinel-2A MSI reflectance data are shown in Fig.
A1. The seasonal and spatial variation of the LAI is obvious from the
figure. At the Honghe site, the spatial LAI distribution in 2013 is similar
to that in 2012; however, the start of the growing season is slightly later
in 2013 than that in 2012 (Fig. A1a). The LAI values of roads, ditches,
and residential areas are generally low. These effects are more pro-
nounced in the Hailun maps (Fig. A1b).

The high resolution LAI data are consistent with the field measured
LAI, characterized by a slope close to the 1:1 line (Fig. 5). The high

Table 5
Canopy, leaf, and soil parameters used for ACRM modeling of the surface reflectance. ALA: average leaf angle, LAD: leaf angle distribution, SLW: specific leaf weight.

Parameters Values References

External parameters Observation geometry See Table 4
Angstrom turbidity factor (β) Derived from Eq. (2)

Canopy structure Leaf area index (LAI) 0.01–8.0 by 0.02
Hot spot parameter (sL) 0.5 Li and Fang (2015)
Foliage clumping (clmp) 0.3–0.8 by 0.1
The regularity parameter (sZZ) 1.0 Bai et al. (2017)
Eccentricity of the LAD (ε) 0.98 Fang et al. (2014, 2018)
ALA of the elliptical LAD (θm) 80° (Honghe), 60° (Hailun) Fang et al. (2014, 2018)

Leaf property Effective # of layers in leaf (N) 1.55 Haboudane et al. (2004)
Refraction index ratio of leaf surface wax to air (n_ratio) 0.9 Kuusk (2001)
Specific leaf weight (SLW, g/m2) 60–200 by 20 Li et al. (2003)
Leaf equivalent water thickness (c1, % of SLW) 130 Bai et al. (2017)
Chlorophyll A & B (c2, % of SLW) 0.01–0.5 by 0.05 Li et al. (2003)
Dry matter content (c3, % of SLW) 97 Houborg et al. (2007)
Anthocyanins (c4, % of SLW) 0.2 Jiang et al. (2011)

Soil reflectance Honghe (MOD09A1.006, 2,012,129) B1 (0.620–0.670 μm): 0.099 This study
B2 (0. 841–0.876 μm): 0.148

Hailun (Landsat 8 OLI, 2016/6/2) B4 (0.630–0.680 μm): 0.092
B5 (0.845–0.885 μm): 0.177
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resolution LAI is an average of the 3×3 pixels corresonding to the field
plot locations (Table 1). The statistical results show an R2 of 0.81 and
0.86, and RMSE of 0.62 and 0.70 for the Honghe and Hailun sites, re-
spectively. The smaller RMSE value at the Honghe site is attributable to
the more homogeneous rice crops (Fig. 5a). At the Hailun site, the high
resolution LAI slightly overestimates during the peak growing season in
July, but it underestimates in September, when the leaves in some
places have become senescent. When all crops are combined, the high
resolution LAI shows excellent agreement with the field measured LAI
(R2= 0.85 and RMSE=0.66) (Fig. 5c).

4.2. Product quality control information

Fig. 6 shows the percentage of LAI retrievals in different quality
status, as indicated by the QQF. The figure shows a clear seasonal
pattern. The suspected retrievals for EPS are mainly located between
DOY 100 and 200 at the Honghe site, whereas only a small portion of
the pixels are marked with “suspect” at the Hailun site, mainly during
the rapid growth period. Almost all GEOV2 retrievals are considered
“valid” over the years, except for a short period in 2015. For PROBA-V,
nearly all retrievals are labeled “valid” from DOY 100 to 300 and “in-
valid” for the other periods. The MODIS QQF shows that nearly all the
LAI values are retrieved by the main algorithm during the beginning
and ending of the season. The fraction of the main algorithm retrievals
is significantly lower in July and August, with large swings between
DOY 180 and 250. During this period, the empirical backup algorithm
is mainly used, and occasionally, there are no valid retrievals. VIIRS
shows similar seasonal patterns as MODIS, with lower quality during
the summer. There is more variation in VIIRS than in MODIS between
DOY 150 and 250, and the percentage of the main retrievals is ~ 10%

lower than those of the MODIS.
The product QQI values provide theoretical quantification of the

uncertainties in the LAI products (Fig. 7). The absolute uncertainties are
consistently higher during the peak growing season and lower during
the beginning and ending of the season (Fig. 7a and b). The higher QQI
values during the summer are related to the higher LAI values during
this period. The differences between the products are very obvious. The
average QQI values for EPS, GEOV2, and PROBA-V are generally higher
than those of MODIS and VIIRS. In contrast to the absolute un-
certainties, the relative uncertainties are generally lower during the
peak growing season than the other periods (Fig. 7c and d). The relative
QQIs values are higher during the early growing period than the late
period. Similar to the absolute QQI values, the relative QQI values for
EPS, GEOV2, and PROBA-V are also higher than those of MODIS and
VIIRS. VIIRS shows the lowest relative QQI, and EPS shows unusually
high spikes during the LAI growing period.

4.3. Inter-comparison of the LAI products

The spatial distribution of all LAI products is illustrated in Fig. A2.
The figure shows that EPS, GEOV2, and GLASS are generally more
homogeneous than the other products in both the Honghe and Hailun
sites. PROBA-V shows more details than the other products because of
its higher resolution (300m). Fig. 8 shows the temporal progression of
the LAI products from DOY 100 to DOY 300. All LAI products show
similar seasonal patterns, depicting the seasonality of the crops very
well, with a rapid increase in LAI around DOY 150–200 and a gradual
decrease around DOY 240–300. Benefiting from the use of various gap
filling techniques, GEOV2, GLASS, GLOBMAP, and PROBA-V show
smoother temporal profiles than EPS, MODIS and VIIRS.

Fig. 3. Comparison of the HJ-1 reflectance with field
measurements. (a) Location of the field measure-
ments over the Honghe area. The background is an
HJ-1 reflectance image (red band, 630–690 nm) on
June 24, 2013. (b) Scatterplot between the HJ-1
reflectance and field measurements. See Table A1 for
more details about the data. (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Comparison of the aggregated high resolution reflectance data with the MODIS reflectance data (MOD09GA, V6) for HJ-1 in Honghe (a) and Hailun (b) and
Landsat-7 and Sentinel-2A in Hailun (c). The color bar indicates different observation dates.
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The LAI profiles differ through the growing season (Fig. 8). The
largest discrepancies (up to 3.0–4.0) occur from DOY 180 to 260. EPS
shows a delayed profile than the other products, especially in 2017.
GLASS shows the smoothest pattern, but the smallestvalue. Moreover,
the average LAI decreasing period estimated with GLASS is later than
most of the other products, except for EPS. GLOBMAP is generally
higher (1–2) than the other products, and for the paddy rice, the start of
the LAI increase is about one month earlier than the other products.

The LAI products shows similar temporal patterns at both the
Honghe and Hailun sites (Fig. S1). The products show different profiles
across the years as a result of different weather conditions, and planting
and management practices. The largest differences occur during the
peak growing season. GLASS shows the least annual variation (<0.5)
during the peak growing season, followed by GEOV2 (~ 1.0). GLOB-
AMAP (4.0), MODIS (3.0), and VIIRS (2.5) show the highest variation
during the peak growing season. For EPS and PROBA-V, the variation

across the different years is around 1.5. Over the Hailun site, PROBA-V
shows a lower LAI peak (~4.0) in 2014, whereas GLOBMAP shows a
lower peak (~5.0) in 2013.

The LAI values derived from the four companion MODIS products
were compared (Fig. 9). The four MODIS products are derived from
different compositions of the MODIS sensors onboard the Terra and
Aqua satellites for 8- and 4-day time steps. The 4-day joint platform
product, MCD15A3H, is much more variable than the other three 8-day
products, especially over the rice field. The single platform 8-day pro-
ducts, MOD15A2H (Terra) and MYD15A2H (Aqua), are much lower (~
2.0) from DOY 180 to 240. The underestimation effects were largely
removed in the joint platform 8-day product, MCD15A2H. Therefore,
the MCD15A2H (Terra + Aqua, 8-day) was used to represent the
MODIS LAI throughout this paper.

The LAI products were composited monthly and compared with the
MODIS LAI (Fig. 10). EPS shows the weakest correlation with MODIS

Fig. 5. Comparison of the high resolution reference LAI (3× 3 pixels) with the field measured data for paddy rice in Honghe (a), maize, soybean, and sorghum in
Hailun (b), and all crops (c). The colors represent different observation dates.

Fig. 6. Temporal variation of LAI qualitative quality flags (QQFs) over Honghe (a) and Hailun (b) for different years. DOY: day of year; RT and RTsat: main radiative
transfer (RT) method used with the best result and with saturation, respectively; VIgeo and VIoth: empirical vegetation index (VI) algorithm used due to bad
geometry and other problems, respectively; N/A: no valid retrieval.
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(R2< 0.10, RMSE >1.70). GEOV2 correlates well with MODIS
(R2> 0.80, RMSE <1.15), but it overestimates the latter in the paddy
rice (bias= 0.93). GLASS has a moderate correlation with MODIS (R2:
0.60–0.66, RMSE: 0.73–0.77), but it shows some unexpected plateau
values in July (3.5), August (4.5), and September (2.0), respectively.
GLOBMAP significantly overestimates MODIS, especially in August and

September (>2.0). PROBA-V has a good agreement with MODIS
(R2> 0.67, RMSE <0.77), but it slightly overestimates in July and
August. As expected, VIIRS shows the best correlation with MODIS with
R2> 0.68 and RMSE <0.54.

Fig. 7. Temporal variation of LAI quantitative quality indicators (QQIs) and relative QQIs (%) between DOY (day of year) 100 and 300 from 2010 to 2017. The
relative QQI is calculated as a ratio of the QQI and the average LAI (Fig. 8). The numbers are the average (standard deviation) values over the period.

Fig. 8. Temporal variation of the moderate resolution LAI products in Honghe (left) and Hailun (right). The reference (triangles) and field (circles) LAI values are
marked with standard deviation ranges. The temporal profiles were shifted to match the reference dates because of the different dates in the file names (Table 4).
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4.4. Validation of the LAI products

Fig. 11 validates the moderate resolution LAI products with the
upscaled reference LAI. The figure shows huge variations among dif-
ferent products, with the RMSE varies between 0.8 and 2.0, and the
RRMSE between 25 and 60%. The performance of the products at the
Hailun site is generally better than that at the Honghe site, as displayed
by the higher R2 values in the former. Nearly all LAI products, except

for GLASS, fail to depict the expected variability of the reference LAI
(R2< 0.30) at the Honghe site. At the Hailun site, GEOV2, GLOBMAP,
and PROBA-V overestimate the reference LAI, and the other four pro-
ducts underestimate.

The products show weaker performance during periods of rapid
changes in LAI: the products tend to overestimate the reference LAI
before DOY 200 and underestimate after DOY 240 (Fig. 11). The per-
formance is highly variable during the peak growing season. Between

Fig. 9. Comparison of the MODIS LAI product suites (version 6): MCD15A2H (Terra+Aqua, 8-day), MCD15A3H (Terra+Aqua, 4-day), MOD15A2H (Terra, 8-day),
and MYD15A2H (Aqua, 8-day), over Honghe (a) and Hailun (b) (2010–2017).

Fig. 10. Comparison of the monthly composited LAI with MODIS for paddy rice in Honghe (first row), maiz, soybean, sorghum in Hailun (middle row), and all crops
in both areas (bottom row).
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DOY 200–240, the LAI ranges from 4.0 to 8.0 (GLASS to GLOBMAP) at
the Honghe site and from 4.0 to 9.0 (EPS to GLOBMAP) at the Hailun
site. During this period, GEOV2, GLOBMAP, and PROBA-V products
overestimate the reference LAI, GLASS underestimates, and the MODIS
and VIIRS values are highly scattered. During the late growing season
after DOY 240 (bluish points), the products underestimate the reference
LAI, except for EPS, which slightly overestimates. Among the seven
products, five products (excluding EPS and GLASS) overestimate at the
Hailun site.

EPS shows a good correspondence with the reference LAI
(R2= 0.81), but it greatly underestimates (bias=−0.85) at the Hailun
site, especially at the peak growing season (Fig. 11). GEOV2 shows a
poor correspondence at the Honghe site (R2= 0.28, RMSE=1.64), but
the performance is much better at the Hailun site (R2= 0.79,
RMSE=0.84). GLASS consistently underestimates at the two sites but
shows the smallest RMSE and RRMSE values (0.92 and 28.9% for all
crops) among all products. Although GLOBMAP shows the best corre-
spondence (R2= 0.86) with the reference LAI, the product displays the
largest overestimation (bias= 1.35) at the Hailun site. MODIS and
VIIRS show high accuracy (bias <0.6), but they also exhibit high un-
certainties (RMSE ≥1.5) at both sites. PROBA-V systematically over-
estimates at the Hailun site (bias= 1.25), and also displays high un-
certainties (RMSE=1.49, RRMSE=48%).

In addition to the 3×3 pixel comparison, the results of the alter-
native comparisons made at the pixel, site, and plot levels were in-
vestigated (Figs. S2 - S4). Generally, there is no significant difference
among the different validation schemes (Table 6). The statistics show
that the overall median R2, RMSE, and RRMSE values are about 0.50,
1.46 and 48%, respectively, for all crops. Similarly, the table shows
better correspondence at the Hailun site than at the Honghe site, with
much higher R2 values (0.74 vs. 0.22). At the Honghe site, the 3× 3
comparison shows the best correspondence with median R2= 0.28,
RMSE=1.35, and RRMSE=48.2%. At the Hailun site, the site level
comparison shows the best agreement, with median R2= 0.85,
RMSE=1.10, and RRMSE=33.6%.

Fig. 12 shows the histogram distribution of all valid LAI values from
the high resolution reference data and the moderate resolution LAI

products. The histogram distributions significantly differ between the
products and no product could fully explain the reference distributions
at both sites. The differences between the products are also illustrated
in the LAI profiles for specific days (color profiles in Fig. 12). For the
Honghe site, the reference LAI values range between 0.5 and 6.0, with
local peaks around 1.5 and 3.0. Similar distributions in peak values are
found for GLASS, MODIS, and VIIRS, whereas GEOV2 shows equalized
distribution for LAI between 1.5 and 6.0. GLASS shows systematic un-
derestimation with two narrow peaks centered around 1.5 and 3.0. At
the Hailun site, the reference LAI ranges between 0 and 6.0, with two
symmetrical peaks between 0 and 3 and 3–7, and a low valley around
3.0. Only GLOBMAP shows a similar pattern to the reference, whereas
all the other products show skewed LAI distributions. For example,
GEOV2 shows a high LAI peak between 5.0 and 5.5. The ranges of EPS
and GLASS are rather narrower than the reference LAI. In contrast,
PROBA-V shows much higher LAI values (4.0–7.0) than the reference
data.

5. Discussions

5.1. LAI product quality

The time series validation results reveal remarkable uncertainties
(RMSE >0.8 and RRMSE >25%) among current LAI products for
agricultural crops in northeastern China (Fig. 11). The product quality
depends, to a large extent, on the specific stage of the growing season,
because of the different retrieval methodology and the quality of input
data. During the green-up period, the LAI products tend to overestimate
the reference LAI of the crops; however, the products underestimate the
crop LAI during the senescence stage. The higher uncertainties during
the green-up and senescence periods complement other validation
findings from croplands (Campos-Taberner et al., 2018; Casa et al.,
2012; Jégo et al., 2012). On the other hand, the product quality varies
significantly during the maturity stage, mainly because of the impact of
cloud contamination and algorithm saturation issues. The higher dis-
crepancies indicate that current global LAI retrieval algorithms are still
limited in capturing the temporal variation of plant properties at a

Fig. 11. Comparison of the moderate resolution LAI products with the upscaled reference LAI (3× 3 pixels) at the Honghe (first row), Hailun (middle), and both sites
(bottom). The right most column compares for EPS and PROBA-V over Hailun. The color bar indicates different observation dates.
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Table 6
Different validation schemes of the satellite LAI products with high resolution reference LAI and field measured LAI values. The median values all shown in italics for
Honghe (a), Hailun (b), and all crops (c). The data are from Figs. 12, S2–S4, respectively. RMSE: root mean square error, RRMSE: relative RMSE (%).

LAI products 3×3 pixel comparison Direct pixel comparison Site level comparison Plot level comparison Medians

R2 RMSE RRMSE R2 RMSE RRMSE R2 RMSE RRMSE R2 RMSE RRMSE R2 RMSE RRMSE

(a) Honghe
GEOV2 0.28 1.64 58.3 0.25 1.71 61.4 0.12 1.87 66.5 0.19 1.85 59.9 0.22 1.78 60.7
GLASS 0.85 0.79 28.2 0.78 0.82 29.4 0.62 1.02 36.3 0.66 0.99 32.1 0.72 0.91 30.8
GLOBMAP 0.12 1.54 55.0 0.12 1.64 58.9 0.07 1.65 58.7 0.03 1.82 59.0 0.10 1.65 58.8
MODIS 0.08 1.35 48.2 0.06 1.51 54.3 0.01 1.57 55.9 0.13 1.55 50.2 0.07 1.53 52.3
VIIRS 0.30 1.29 46.1 0.29 1.31 48.2 0.20 1.43 50.9 0.19 1.52 49.3 0.25 1.37 48.8
Medians 0.28 1.35 48.2 0.25 1.51 54.3 0.12 1.57 55.9 0.19 1.55 50.2 0.22 1.53 52.3

(b) Hailun
EPS 0.81 1.14 33.4 0.75 1.22 35.7 0.79 1.10 31.4 0.45 1.55 44.2 0.77 1.18 34.6
GEOV2 0.79 0.84 24.7 0.75 0.93 27.2 0.85 0.86 27.0 0.53 1.26 36.0 0.77 0.90 27.1
GLASS 0.83 1.00 29.2 0.67 1.14 33.3 0.86 0.87 27.3 0.69 1.19 34.0 0.76 1.07 31.3
GLOBMAP 0.86 1.73 50.5 0.79 1.88 55.0 0.92 1.80 56.5 0.68 1.77 50.5 0.83 1.79 52.8
MODIS 0.28 1.58 46.1 0.21 1.81 56.1 0.44 1.23 38.6 0.35 1.59 45.4 0.32 1.59 45.8
PROBA-V 0.82 1.49 47.9 0.67 1.62 53.9 0.85 1.42 44.5 0.45 1.65 47.1 0.75 1.56 47.5
VIIRS 0.13 2.00 58.4 0.43 1.39 49.1 0.57 1.07 33.6 0.42 1.47 41.9 0.43 1.43 45.5
Medians 0.81 1.49 46.1 0.67 1.39 49.1 0.85 1.10 33.6 0.45 1.55 44.2 0.74 1.44 45.2

(c) All crops
GEOV2 0.57 1.24 39.3 0.53 1.31 41.5 0.44 1.48 49.5 0.29 1.65 50.8 0.49 1.40 45.5
GLASS 0.80 0.92 28.9 0.70 1.02 32.4 0.70 0.95 31.8 0.66 1.07 32.9 0.70 0.99 32.1
GLOBMAP 0.67 1.66 52.1 0.59 1.78 56.6 0.49 1.72 57.5 0.31 1.80 55.4 0.54 1.75 56.0
MODIS 0.24 1.50 47.1 0.17 1.67 55.4 0.21 1.42 47.5 0.24 1.57 48.3 0.23 1.54 47.9
VIIRS 0.17 1.77 55.5 0.37 1.35 48.6 0.37 1.27 42.5 0.31 1.50 46.2 0.34 1.43 47.4
Medians 0.57 1.50 47.1 0.53 1.35 48.6 0.44 1.42 47.5 0.31 1.57 48.3 0.49 1.46 47.9

Fig. 12. Histogram of the upscaled resolution reference LAI (500m) and the moderate resolution LAI products for Honghe (left) and Hailun (right). The colored
profiles show the typical profiles over four days (Table 4). (a).
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regional scale.
As a result of different input reflectances and retrieval algorithms,

distinct differences exist among the different LAI products. The small
negative bias for EPS during the peak growing season is partly attrib-
uted to the lack of representation of the clumping effect at the canopy
level in the algorithm (García-Haro et al., 2018). Both GEOV2 and
PROBA-V overestimate the reference data (Fig. 11). Overestimation of
the reference data has also been reported in the earlier GEOV1 product
over crops (Camacho et al., 2013). One reason for the overestimation is
possibly due to the lack of representative inputs (e.g., for the soil re-
flectance) within the neural network training database, especially over
the paddy rice site. As shown in Fig. 11, GEOV2/PV (1/112°) matches
better than PROBA-V (300m) with the upscaled reference LAI at the
Hailun site. The systematic overestimation of PROBA-V (bias= 1.25) is
mainly attributed to two reasons: (1) the usage of the blue band, which
is sensitive to atmospheric effects, and (2) the usage of the top of
aerosol reflectance after partial atmospheric correction as the input
data (Baret et al., 2016).

Compared with the reference LAI, GLASS shows the least un-
certainty (RMSE=0.92 and RRMSE=28.9% for all crops) among all
products (Fig. 11). Part of the lower uncertainty is attributed to the
general underestimation of the GLASS LAI for all crops (bias=−0.57).
The GLASS algorithm makes use of the MODIS reflectance for an entire
year to estimate the yearly LAI profile (Xiao et al., 2014). The high bias
may also be related to the limited training data over croplands, espe-
cially during the summer.

GLOBMAP significantly overestimates the reference LAI
(bias= 1.35) at the Hailun site and displays high bias (0.96) and RMSE
values (1.66) for all crops (Fig. 11). However, other studies have shown
that GLOBMAP generally underestimates GLASS, GEOV1, and MODIS
(V5) for crops at a global level (Fang et al., 2013). GLOBMAP classifies
all herbaceous land cover types as crops and grasses, and LAI is esti-
mated with an empirical relationship with the simple ratio (SR) vege-
tation index for these types (Liu et al., 2012). The significant over-
estimation of GLOBMAP in this study is attributed to the lack of
generality of the global LAI algorithm over the study area.

Earlier studies have found that MODIS (V5) generally under-
estimates for crops (~ 0.5), especially during the senescence stage
(Camacho et al., 2013; Claverie et al., 2013; Yan et al., 2016b). In this
study, the newer MODIS V6 shows a smaller bias (0.17) but similar
underestimation during the senescence period (Fig. 11). The bias of
MODIS V6 could reach 4.0 during the green-up stage (Fig. 11). Similar
poor performance, although to a lesser extent, has been reported for
earlier versions of MODIS (Baret et al., 2013; Groenendijk et al., 2011).
VIIRS agrees well with MODIS (R2= 0.81, RMSE=0.51, Fig. 10), but
both products show high uncertainties when compared with the re-
ference LAI of the crops (RMSE>1.5, RRMSE>47%, Fig. 11). The high
uncertainties may also be attributable to the variable input reflectance,
especially during the peak growing season.

Current LAI products show much higher correspondence with the
reference LAI for the maize, soybean, and sorghum crops at the Hailun
site than for the paddy rice at the Honghe site (Fig. 11 & Table 6). The
poorer performance of LAI products over rice fields has been reported
in earlier studies (Cheng, 2008; Urrutia, 2010). For example, Urrutia
(2010) reported that MODIS (V5) could underestimate the rice LAI by
about 1.0 to 3.0. This study shows a similar underestimation of LAI in a
paddy rice site for GLASS, MODIS (V6), and VIIRS, especially when the
LAI> 3.0 (Fig. 11). Recently, Campos-Taberner et al. (2018) reported
that EPS, GEOV1, and MODIS (V5) performed very well for rice crops in
southern Europe (R2≥0.90 and RMSE≤0.80). However, our results
show that GEOV2, a successor of GEOV1, overestimates the reference
LAI of rice crops by >1.0 (Fig. 11). It is noted that, in contrast to the
single rice crop in Honghe, all maize, soybean, and sorghum crops were
combined and compared together with the reference LAI at the Hailun
site.

5.2. Perspectives

A comparison of the product quality flags shows that the GPR al-
gorithm, adopted by EPS, may be more affected by the background
issues during the green-up period (Fig. 6). However, the EPS algorithm
effectively manages the cloud contamination issues during the summer,
by adopting the SWIR band. In contrast, the MODIS LUT algorithm is
more stable during the green-up period, but it suffers from the low-
quality input data during the summer.

Although the product theoretical uncertainties, i.e., the QQI, have
been available over the past decade (e.g., MODIS), the QQI information
has been rarely investigated in the community. The seasonal variation
of the product QQI is valuable as it allows users to understand which
temporal periods are more or less dispersible (Fig. 7). The time series of
the QQI can be examined to determine the temporal evolution of the
product quality. However, because of algorithm differences, current
QQI information is incomparable across different products and cannot
be used to evaluate which product is less uncertain. The use of a well-
defined standard QQI is desirable to allow inter-comparison across
different products.

This study highlights the challenges in estimating LAI from mod-
erate resolution satellite data at different growth stages. The poorer
performance of the LAI products at the Honghe site illustrates the need
to consider the background effects in regional scale LAI mapping.
Inadequate consideration of the water-logging environment in radiative
transfer models has caused large uncertainties in the LAI estimation in
rice fields (Urrutia, 2010; Wu et al., 2006; Xiao et al., 2006). At the
Hailun site, the leaf senescence and background exposure during the
late stage may have contributed to the underestimation of LAI in both
high and moderate resolution LAI data (Figs. 5 and 12). Duveiller et al.
(2011), using SPOT sensors (20m), reported similar high uncertainties
(RRMSE >100%) in estimating the winter wheat LAI during the se-
nescent phase. This study used the pre-season surface reflectance as the
background reflectance in the ACRM simulation process. Indeed, the
model simulation and LAI retrieval can be improved by incorporating a
more advanced soil model (e.g., Jiang and Fang, 2019) or using the
real-time background reflectance from the field. A physically more
plausible way is to use crop specific radiative transfer models (Richter
et al., 2011).

There is generally no significant difference among the four different
validation schemes investigated in this study (Table 6). The 3×3
comparison scheme was applied in this study because it suppresses the
effects of point spread function and registration errors. The direct pixel
level comparison reveals the differences between the product and the
reference LAI, but it may be affected by the spatial heterogeneity within
the pixel. A comparison of the average values for different dates
minimizes the random errors relative to the systematic errors. A suffi-
cient number of data pairs over the whole time series are necessary to
apply the site level comparison properly. The plot level comparison is
easy to apply for diagnostic purpose, but it requires that the study area
is homogeneous and the plot measurements are representative of the
pixel values.

The high spatial resolution LAI data generated from HJ-1, Landsat,
and Sentinel-2A provide a good opportunity to evaluate the global
moderate resolution products over time. Fig. 5 shows that the un-
certainty of the high resolution reference LAI (RMSE=0.66 for all
crops) is about 44% of the uncertainties of the LAI products (median
RMSE ≈ 1.50, Table 6). For a proper validation of the LAI products, the
standard uncertainty of the reference data should ideally not exceed
30% of the product uncertainty (Widlowski, 2015). Obviously, the
uncertainty of the reference LAI is about 50% higher than the ideal
tolerance level in this study. Uncertainties in the reference data arise
from the fact that crop fields are not perfectly homogeneous (e.g., bare
soils, paved roads, and ditches), at both the high- and moderate-re-
solution pixel levels. The land cover heterogeneity could certainly affect
the field LAI sampling, measurement and spatial averaging, the
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observed satellite reflectance, and the LAI retrievals. It is noted that
LAI-2200 obtains the PAIeff, which may overestimate the true LAI be-
cause of the impact of leaf senescence and crop stems, especially during
the late growing season (e.g., Fig. 5b). Nevertheless, we do not expect
the spatial heterogeneity and the uncertainties in the LAI measurements
to significantly impact the main conclusions drawn from this study.

6. Conclusion

A time series validation study was performed for seven global LAI
products over the croplands in northeastern China. The validation study
reveals remarkable uncertainties in current LAI products for agri-
cultural crops (RMSE: 0.80–2.0 and RRMSE: 25–60%). The perfor-
mance of the LAI products varies at different phenological stages: the
global LAI tends to overestimate the high resolution reference LAI
during the green-up stage, largely fluctuates during the maturity stage,
and underestimates during the senescence stage. The weak performance
is mainly attributed to the lack of regional tuning of the global LAI
algorithms over agricultural areas. Further efforts are necessary to
improve the LAI product quality in local and regional scales, especially
for the water-logged paddy rice fields. This study highlights the im-
portance of crop-specific and temporal validation at a regional scale.
More validation studies are needed in other parts of the world with

sufficient field LAI measurements. The uncertainty information exposed
in this study is beneficiary for product improvement and the application
community.
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Appendix A. Field measured reflectance data over the Honghe area in 2013

Field reflectance data were obtained with an AvaField 3 spectroradiometer (Avantes, Apeldoorn, The Netherlands) over the Honghe area in June
and July, respectively (Table A1). The field measurements were made between 9:00 AM and 12:00 AM local time, corresponding to the HJ-1 satellite
overpasses on June 24 and July 15, 2013, respectively.

Table A1
HJ-1 and field measured red (630–690 nm) and near infrared (NIR, 760–900 nm) reflectance data over the Honghe area in 2013.

Date (YYYYMMDD) Field type Latitude (°) Longitude (°) Red NIR

HJ-1 Field HJ-1 Field

2013/06/22 Grass 47.5160 133.5774 0.1040 0.0588 0.3091 0.3031
2013/06/22 Rice 47.7571 133.5423 0.0834 0.0817 0.2057 0.2235
2013/06/22 Soybean 47.5166 133.5754 0.1362 0.0957 0.2424 0.2097
2013/06/23 Concrete 47.5855 133.5097 0.2158 0.2090 0.3182 0.3149
2013/06/23 Grass 47.7423 133.5267 0.0862 0.0985 0.3791 0.3369
2013/06/23 Soybean 47.7584 133.5427 0.1301 0.0979 0.2631 0.2287
2013/07/15 Concrete 47.5855 133.5097 0.2446 0.3042 0.3380 0.3091
2013/07/15 Grass 47.7423 133.5267 0.1216 0.1242 0.3465 0.3300
2013/07/15 Rice 47.7571 133.5423 0.0959 0.1113 0.3793 0.3246
2013/07/16 Soybean 47.5875 133.4992 0.1092 0.1028 0.3410 0.3002
2013/07/16 Soybean 47.7584 133.5427 0.1155 0.1025 0.3951 0.3838
2013/07/16 Wetland 47.5853 133.4989 0.1023 0.1481 0.3742 0.3423
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Appendix B. High resolution reference LAI maps over the study area

Fig. A1. High resolution reference LAI maps derived for Honghe (a) and Hailun (b). See Table 4 for more information about the high resolution data.
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Appendix C. Moderate resolution LAI products over the study area

Fig. A2. Moderate resolution LAI products for EPS, GEOV2, GLASS, GLOBMAP, MODIS, PROBA-V, and VIIRS over Honghe in 2012 and 2013 (a) and Hailun in 2016
(b). The blank pixels in MODIS and VIIRS are build-up areas and have no valid data. The reference LAI (first row) is in 500m and see Table 2 for the others. The date
is shown at the bottom in YYYYMMDD (Table 4).

Appendix D. Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:https://doi.org/10.1016/j.rse.2019.111377. These data
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include the Google map of the most important areas described in this article.
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