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A B S T R A C T

A wide range of ecological, agricultural, hydrological and meteorological applications at local to regional scales
requires decametric biophysical data. However, before the launch of SENTINEL-2A, only few decametric pro-
ducts are produced and most of them remain limited by the small number of available observations, mostly due
to a moderate revisit frequency combined with cloud occurrence. Conversely, kilometric and hectometric bio-
physical products are now widely available with almost complete and continuous coverage, but the associated
spatial resolution limits the application over heterogeneous landscapes. The objective of this study is to combine
unfrequent decametric spatial resolution products with frequent hectometric spatial resolution products to
improve the temporal frequency and completeness of decametric observations. The study focuses on the fraction
of photosynthetically active radiation absorbed by the green vegetation (FAPAR) because of its important role in
canopy models and small dependency to scaling issues.

An algorithm is developed to provide near real time estimates of FAPAR called DHF (for Decametric
Hectometric Fusion) at a decametric resolution and dekadal time step. It is assumed that the FAPAR time course
is described by a second-degree polynomial function over a limited 60-days temporal window for each deca-
metric pixel. To reduce the dimensionality of the problem, landcover classes are considered instead of each
individual pixel. For each class, the coefficients of the polynomial function are adjusted using the temporal
course of the available decametric FAPAR products, under the constraint of providing a good match with the
time course of the hectometric dekadal FAPAR products. The point spread function associated to the hectometric
FAPAR products and the possible biases between the decametric and hectometric FAPAR products are explicitly
accounted for.

The algorithm was evaluated over a time series of decametric Landsat-8 FAPAR images (30 m) and hecto-
metric (330 m) dekadal GEOV3 FAPAR derived from PROBA-V images acquired in 2014 over a site in the South-
West of France.

Results show that the estimated DHF FAPAR products capture well the expected seasonal variation and spatial
distribution while improving the temporal frequency and spatial and temporal completeness of the original
Landsat-8 products. A leave one out exercise shows that the DHF values are in very good agreement with the
Landsat-8 FAPAR (RMSE = 0.05–0.14) that were not used when computing the DHF. This demonstrates the
robustness of the algorithm and interest under cloudy regions. Additional comparison with ground measure-
ments collected over 14 sunflower fields along the growth season confirms the good performances of the DHF
FAPAR products (RMSE = 0.11).

1. Introduction

A wide range of environmental and agricultural applications at local
to regional scales requires accurate and frequent estimation of

biophysical vegetation characteristics at the decametric spatial resolu-
tion. Satellite sensors such as Landsat-5 (30 m), Landsat-7 (30 m),
Landsat-8 (30 m), SPOT4 (20 m), SPOT5 (20 m), FORMOSAT (8 m) and
Sentinel-2A (10 m) provide observations at decametric resolutions.
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Several algorithms have already been proposed to generate biophysical
products from these sensors, including Jiang et al. (2016), Li and Fang
(2015), Li et al. (2015), Verger et al. (2011a), Verger et al. (2011c) and
Ganguly et al. (2012). However, the use of these products is always
limited by the reduced revisit frequency even degraded by cloud oc-
currence. Conversely, due to their large swath, kilometric resolution
sensors such as VEGETATION, PROBA-V or MODIS provide daily ob-
servation of the globe. Few kilometric biophysical products have been
generated operationally from these sensors at four to ten days interval,
including MODIS (Knyazikhin et al., 1998), CYCLOPES (Baret et al.,
2007), GEOV1 (Baret et al., 2013a), GEOV2 and GLASS (Liang et al.,
2013; Xiao et al., 2015). They have been extensively validated and
applied in several studies (Camacho et al., 2013; Garrigues et al., 2008;
Weiss et al., 2007). However, the generally mixed nature of kilometric
pixels raises both a scaling issue and difficulties when the landscape
object of interest is significantly smaller than the pixel size (Baret et al.,
2013a; Shabanov et al., 2003). Recent improvement of the spatial re-
solution down to hectometers such as PROBA-V (daily 330 m), Sentinel-
3 (every 2 days, 300 m), and VIIRS (daily 370 m) is expected to get
closer to the spatial resolution required for several applications. How-
ever, this is still far from the expected decametric resolution, more
suited to the typical length scale of most landscapes (Garrigues et al.,
2008).

The current technological constraints of sensors having only a lim-
ited number of pixels prevent from getting at the same time a large
swath enabling frequent global coverage and keeping a sufficiently high
spatial resolution. Constellation of high spatial resolution satellites may
solve the question at the expense of an increased cost. Alternatively, the
combination of decametric satellite observations with frequent hecto-
metric or kilometric observations is a promising way to increase the
temporal frequency of decametric products. Previous studies have de-
monstrated the ability of fusing observations at different spatial re-
solutions (Cardot et al., 2008; Faivre and Fischer, 1997; Gao et al.,
2006; Hilker et al., 2009; Jiang et al., 2016; Zhu et al., 2015). These
methods can be divided into several groups depending on (1) if the land
cover map is used; (2) if time series information is used; and (3) if
biophysical variables are estimated.

Faivre and Fischer (1997) used a linear unbiased prediction method
to estimate reflectance at 20 m spatial resolution from an image with
resolution of 400 m by assuming that the reflectance of a mixed pixel is
a linear combination of several high resolution pure pixels. This method
was later extended to LAI estimation (Faivre and Delecolle, 1997).
Under the same assumption, Cardot et al. (2008) proposed a non-
parametric statistical model to derive high spatial resolution reflectance
or vegetation index from the temporal trajectory of frequent low spatial
resolution data. This method was applied by Guyon et al. (2011) to
monitor the phenology specific to the deciduous forest from kilometric
satellite data. Both methods assume the a priori knowledge of the land
cover at the decametric resolution. This constitutes a strong limitation
of these methods, particularly over agricultural landscapes where the
land cover may change significantly within a single year.

Gao et al. (2006), Hilker et al. (2009) and Zhu et al. (2010) pro-
posed a method to fill gaps in Landsat surface reflectance images using
MODIS data over a limited spatial window centered on the missing
Landsat pixels. These algorithms do not require ancillary land cover
map. However, they need a MODIS image close to the prediction time
and are highly dependent on the number of input images (Gevaert and
García-Haro, 2015). These requirements may limit the application of
these methods in cloudy regions. Alternative methods performing only
over multi-year time series of Landsat surface reflectance images have
contributed to improve the spatial and temporal completeness of data
(Zhu et al., 2015). However, the high dependency of these methods to
the availability of Landsat clear images may be limiting in regions with
high cloud occurence.

Data fusion methods were proposed for some variables including
land surface temperature (Weng et al., 2014) and evapotanspiration

(Anderson et al., 2011; Semmens et al., 2016). However, only little
attention was paid to biophysical variables such as FAPAR or LAI (Jiang
et al., 2016). The fusion of individual biophysical products derived from
several sensors accounts implicitly for the differences between their
observational characteristics since they are already explicitly used
when computing the individual biophysical products. Current kilo/
hectometric biophysical products show a good continuity and com-
pleteness in both the spatial and the temporal domains. The quasi de-
kadal temporal sampling also satisfies the requirements of several ap-
plications. Jiang et al. (2016) generated spatial consistent and complete
Landsat LAI products by fusing Landsat and MODIS reflectance ob-
servation using an ensemble of multiscale filter and canopy radiative
transfer model inversion. However, this study receives only limited
validation and has not been applied for multi-date estimations.

The objective of this study is to develop an algorithm generating
near real time decametric FAPAR products at a dekadal time step called
DHF (Decametric-Hectometric Fused) from the combination of avail-
able decametric and kilometric FAPAR products. The algorithm is ap-
plied to Landsat-8 FAPAR products (Baret et al., 2016) and GEOV-3
FAPAR products (Baret et al., 2013b) biophysical products to generate
the dekadal 30 m FAPAR time series of DHF products. The study area,
satellite data and ground measurements used for the validation are first
presented. Then the principles of the algorithm are described. Finally,
the performances of the algorithm and corresponding products are
evaluated and the limits discussed.

2. Materials

2.1. Study area and ground measurements

The 30 km × 30 km study area is located in the Southwest of France
(Fig. 1) (43.52° N, 1.18° E). Several crops including wheat, sunflower,
barley, rapeseed and maize are covering most of the area. The site is
conveniently located where two Landsat-8 neighboring tracks overlap,
offering potentially one image every 7 to 9 days at minimum.

FAPAR was measured six times in the sunflower fields of this region
from June 12, 2014 to August 27, 2014, almost every 15 days, by using
digital hemispherical photographs (DHP). In each field, a 20 m × 20 m
Elementary sampling unit (ESU) was selected for the measurements
(Fig. 1). Each ESU was sampled with 12–20 DHPs according to the
VALERI spatial sampling protocol (http://w3.avignon.inra.fr/valeri).
The DHPs were taken using a Nikon CoolPix 8400 camera equipped
with a FC-E8 fisheye lens. The downward-looking camera was fixed at
the top of a pole. The height of the pole keeps a constant distance
(~1.2 m) between the lens and the top of the canopy (Demarez et al.,
2008). All photos within an ESU were processed simultaneously using
the CAN-EYE software (http://www4.paca.inra.fr/can-eye) to extract
the FAPAR variable. The black-sky FAPAR (GCOS, 2011) observed at
10:00 solar time was used for the ground validation in this study was
calculated from CAN-EYE.

2.2. LANDSAT-8 30 m FAPAR product

The derivation of FAPAR products from the Landsat-8 individual
images at 30 m spatial resolution is achieved according to the algorithm
described in Li et al. (2015). The Landsat-8 30 m FAPAR top of the
atmosphere (TOA) reflectance images are first transformed into top of
canopy (TOC) reflectance using the algorithm developed by Hagolle
et al. (2008) and Hagolle et al. (2010). TOC reflectance in the green,
red, near infrared and the two short wave infrared bands are then
transformed into FAPAR values using a neural network, based on the
BV-NNET (Biophysical Variables Neural Network) tool developed by
Baret et al., 2007. FAPAR corresponds here to the black-sky value at
10:00 local solar time which provides a close approximation of the daily
integrated black-sky value (Baret et al., 2007). The neural network was
trained over a synthetic database made of PROSAIL radiative transfer

W. Li et al. Remote Sensing of Environment 200 (2017) 250–262

251

http://w3.avignon.inra.fr/valeri
http://www4.paca.inra.fr/can-eye


model simulations of TOC reflectance data (Jacquemoud et al., 2009).
The distribution and co-distribution laws of the input variables of ca-
nopy structure, leaf and soil properties are designed to represent the
expected actual distribution and co-distribution over the land surface.
In addition to the FAPAR value, a quality flag is associated to each pixel
to indicate the cloud contamination or cloud shadow, water or possible
failure in the algorithm. The FAPAR 30 m product is provided in its
original UTM projection on the WGS-84 datum and was validated over
the same site of interest (R2 = 0.86, RMSE = 0.1) (Li et al., 2015). The
nominal Landsat revisit time is 16 days. However, the actual temporal
sampling frequency of the FAPAR product derived from LANDSAT-8
varies from 7 to 16 days over the study area where 2 consecutive tracks
overlap (Fig. S1).

2.3. GEOV3 FAPAR 330 m product

The FAPAR values at 330 m resolution are derived from the PROBA-
V reflectance measurements according to the GEOV3 algorithm devel-
oped by Baret et al. (2013b). GEOV3 FAPAR is defined the same way as
for Landsat-8. It is generated in near real time every ten days in two
consecutive steps. In the first step, the daily FAPAR values are com-
puted for each available PROBA-V observation using a neural network
approach. The Neural network is trained over a specific data set

corresponding to a weighted average of MODIS Collection5 and CY-
CLOPES V3.1 FAPAR products similarly to what was proposed by Baret
et al. (2013a) for the GEOV1 products. The second step consists in
compositing the daily FAPAR products to get the near real time final
product at a dekadal time step by smoothing the temporal profile,
filling possible gaps and making a short-term projection. Quality flags
and quantitative uncertainties are also computed. The performances of
GEOV3 products have been evaluated (R2 = 0.84, RMSE = 0.1)
(Camacho et al., 2016). GEOV3 products are provided in a plate carrée
projection at 0.0089° spatial resolution (330 m at the equator) on WGS-
84 datum. More details on the algorithm can be found in Baret et al.
(2013b). The original GEOV3 products were projected in the UTM
projection consistently with the Landsat-8 derived FAPAR products.

3. Methods

The general principles are first described with reference to deca-
metric and hectometric FAPAR products. The implementation is then
presented with application to LANDSAT-8 30 m and GEOV3/PROBA-V
FAPAR products.

Fig. 1. (a) Landsat-8 FAPAR product and (b) PROBA-V FAPAR derived over the study area for June 20th 2014. Green stars represent the positions of ground measurements over sunflower
fields in 2014. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The three available sources of FAPAR values used to
compute the DHF FAPAR near real time estimates for the last
dekad of the temporal window. td is the measurement date of
Landsat-8, T is the last day of the temporal window and D is the
length of temporal window expressed in dekads (here D = 6
dekads).
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3.1. General principles

3.1.1. The fusion algorithm
The proposed algorithm is based on the combination of three FAPAR

products (Fig. 2): (1) the hectometric GEOV3 FAPAR products available
at the dekadal time step and derived from PROBA-V, FAPARh (h stands
for hectometric); (2) the decametric FAPAR products derived from
Landsat-8, FAPARd (d stands for decametric), available at a frequency
ranging between 7 and 16 days with significant missing values due
mainly to cloud occurrence; Fig. S1 in the supplementary information
section describes the actual Landsat-8 available images and the corre-
sponding percentage of valid pixels; (3) the previous DHF FAPAR
products, FAPARf (f stands for fusion), available at the decametric re-
solution and at the dekadal time step.

The computation of the DHF product for date T corresponding to the
last day of the temporal window, composed of D dekads, rely on the
previous time series of DHF products updated with the last hectometric
product at time T (GEOV3/PROBA-V) and the possible decametric
(Landsat-8) image available during the last dekad [T−10,T]. The
other hectometric and possible decametric products existing within
[T−10D,T−10] temporal window are not explicitly taken into ac-
count in the algorithm since they have already been used to estimate
the previous DHF products at T-10.

The algorithm assumes that the dynamics of FAPAR of a given
decametric pixel is described by a second degree polynomial in a re-
stricted temporal window [T−10D,T] where D is the length of the
temporal window expressed in dekads:

= + +FAPAR t a tb t c( ) .i
d

i i i
2 (1)

where FAPARi
d(t) is the FAPAR value at the decametric resolution d for

pixel i and for time t and [ai,bi,ci] are the corresponding polynomial
coefficients. This assumption is justified by the expected smooth tem-
poral variation of FAPAR. Indeed, FAPAR is mainly driven by the green
area index and therefore results from incremental processes of growth
and senescence. Once the coefficients [ai,bi,ci] are estimated, the DHF
value for time t = T is computed. This corresponds to a short-term
projection of the polynomials since the last date with a decametric in-
formation is generally observed for t < T (see Fig. 2). When the re-
sulting DHF product value at time T is out of the expected physical
range for the vegetation canopies (0≤FAPAR≤0.94) including a small
tolerance (± 0.05), it is considered as a missing value. When the
FAPAR value is in the tolerance domain (−0.05≤FAPAR≤0.00 -
or 0.94≤FAPAR≤0.99) the DHF value is set to the closest bound of
the physical range (0.00 or 0.94).

The coefficients [ai,bi,ci] are estimated by fitting Eq. (1) to the
previous DHF products and the possible decametric Landsat-8 image
available during the last dekad. In addition, the constraints imposed by
the hectometric observations are exploited: the FAPAR value of a pixel I
at the hectometric resolution and time t, FAPARI

h(t), is the weighted
average of decametric resolution pixels FAPARd(t) values because of the
scaling properties of FAPAR (Weiss and Baret, 2010):

∑=
=

∙FAPAR t PSF FAPAR t( ) ( )I
h

i

k

i i
d

1 (2)

The weights are described by the point spread function (PSFi) con-
sidering that a limited number (k) of decametric resolution pixels
contribute significantly to each hectometric pixel. The PSF of the
PROBA-V hectometric FAPAR products must therefore be known. It is
computed using quasi-simultaneous Landsat-8 and PROBA-V FAPAR
products as shown later. Then, a correction is applied to avoid possible
bias between hectometric and decametric products that are derived
from the different sensors and algorithms.

A cost function J that uses three sources of information is minimized
to estimate the 3 polynomial coefficients over each decametric pixel.
The cost function J is the weighted sum of the corresponding three

components.

= + +J J J Jf d h (3)

where Jf, Jd and Jh are the components of the cost function associated
respectively to the fusion (DHF), decametric (Landsat-8) and hecto-
metric (GEOV3/PROBA-V) FAPAR data. The first component of the cost
functions (Jf in Eq. (3)) measures the discrepancy between the fusion
products estimated previously, FAPARi

f(t), and the new estimated

value, FAPAR t( )i
f computed with Eq. (1) for all the kN decametric

pixels in the spatial window and all the first D−1 dekads of the tem-
poral window:

∑∑= −
= =

J
kND
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t

D

i
f

i
f

1 1


(4)

The second component (Jd in Eq. (3)) measures the discrepancy
between the decametric FAPAR product derived from a possible ob-
servation at date td during the last dekad, FAPARi

d(td), and the esti-

mated DHF product for the same date, FAPAR t( )i
f

d
. It is computed over

all the α2N decametric pixels of the spatial window considered, where α
is the resolution ratio, i.e. the hectometric spatial resolution divided by
the decametric spatial resolution. In our case, the resolution ratio is
close to 11.

∑= −
=
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1
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(5)

The third component of the cost function (Jh in Eq. (3)) measures
the discrepancy between the hectometric products and the FAPAR va-
lues computed using the estimated decametric fusion products

FAPAR T( )I
f. This is evaluated over all the N hectometric pixels of the

spatial window for the last date T of the temporal window. PSFi cor-
responds to the PSF value for each pixel i that is computed in an in-
dependent step. This third component introduces constraints between
the individual decametric pixels. Further, because of the PSF, Jh in-
troduces also explicit dependency between neighboring hectometric
pixels since common decametric pixels are shared by adjacent hecto-
metric pixels.

∑ ∑= −
=

=
J

N
FAPAR T PSF FAPAR T1 ( ( ) ( ) )2h

I

N

I
h

i

k
i i

f

1
1


(6)

Note that the three terms of the cost function are normalized by the
number of times the individual contributions are summed up, i.e. [ ,kND

1

, ]α N N
1
2

1 respectively for [Jf,Jd,Jh]. If there is no decametric Landsat-8
images available for some temporal windows, Jd is set to zero.
Moreover, Jh is set to zero when the hectometric pixel is invalid.
Similarly, when the algorithm is initialized, no DHF products are
available and Jf is set to zero.

3.1.2. Spatial and temporal operating windows
The spatial and temporal windows used in the algorithm must be

specified. The temporal window should be long enough to provide
sufficient DHF, decametric and hectometric data, while being short
enough to describe the temporal profile faithfully by a second-degree
polynomial function. Previous studies (Verger et al., 2011b) showed
that a second degree polynomial describes accurately the temporal
profile over a 60-days period in most of the cases. A 60-days temporal
window provides 7 dekadal DHF values among which the last one is to
be estimated, 0 to 5 potential decametric images in the case of the
Landsat-8 sensor, and 7 dekadal hectometric FAPAR products (GEOV3/
PROBA-V). A 60-days temporal operating window (D=6) is therefore
selected. The temporal window is moved towards the future with a
dekadal time step. When initializing the algorithm, the temporal
window may also be moved towards the past. In this case, the first DHF
value among the 7 available one in the 60-days period will be estimated
similarly as we will see later.
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The size of the spatial operating window should allow accounting
for the overlap of the PSF between hectometric pixels while being small
enough to ease the computation. A 3 × 3 hectometric pixels window
that corresponds to a square kilometer was selected. However, because
the extent of the PSF is generally larger than the ground sampling
distance (the length of a side of a pixel), a border with decametric pixels
will also need to be accounted for. The center of the spatial moving
window is moved sequentially over the center over all hectometric
pixels in the image. Therefore, except for the borders, the coefficients of
all the decametric pixels in Eq. (1) belonging strictly (PSF not ac-
counted for) to a hectometric pixel is estimated 9 times. A weighted
average of the 9 DHF FAPAR estimates is computed to provide a unique
value:

∑=
=

FAPAR T ω r FAPAR T( ) ( ) ( )i
f

r
i r
f

1

9

,


(7)

where FAPAR T( )i r
f
,

 is the DHF estimates for pixel i at date T coming
from one of the 9 spatial windows r and ω(r) is the associated weight.
The weight, ω(r=1), of the window centered on the considered hec-
tometric pixel is assigned to be equal to that of the other 8 surrounding
pixels ω(r > 1). Weights are thus computed as:

= = > =ω r ω r( 1) 0.5; ( 1) 0.0625 (8)

This averaging process stabilizes the solution and prevents from
discontinuities between spatial windows.

3.1.3. Initialization of the algorithm
The algorithm requires 6 existing DHF dekadal values at each de-

kadal time step when running forward in near real time. When the al-
gorithm is applied over the first temporal window of the time series, no
DHF decametric products is available yet. An initialization process
should therefore be developed to get a first estimate of the DHF. This is
completed in two steps: (1) find along the available time series a tem-
poral window that contains enough Landsat decametric images to
provide a good estimate of the DHF products; (2) then run backward the
algorithm from this initialization window to generate the DHF values
down to the start of the first temporal window of the time series
(Fig. 3). The algorithm is run in the forward regular mode as described
in Fig. 2 to increase the time series by including the most recent dekads.

The initialization step should start by identifying the temporal op-
erating window in the time series that provides the maximum number
of Landsat-8 images with a maximum of valid pixels. The inputs of the
processing for this first window include all the 7 dekadal hectometric
FAPAR images and all the available decametric images. Outputs are the
DHF products for the 7 dekadal dates. At least three Landsat-8 deca-
metric images should be used. When it is not possible to find three

Landsat-8 decametric images within a 60-day temporal window, the
time period should be extended to include three decametric images. If
the decametric images have invalid pixels, it is not possible to fill them
with the DHF estimates since they do not exist yet. In this case, small
clusters of invalid pixels are filled with the neighboring values. If larger
clusters of invalid pixels are observed, specific actions are undertaken
that will not be detailed here for the sake of brevity. The reader can find
the full description in the product ATBD (Baret et al., 2016).

If the initialization temporal window does not correspond to the
first temporal window of the time series, the backward mode is trig-
gered. It runs similarly to what is described for the regular forward near
real time mode, except that the DHF of the first dekad of the temporal
window is estimated instead of the last one (compare Fig. 2 with Fig. 3).
This process is repeated down to the start of the temporal series.

3.2. Calibrating the point-spread-function of hectometric FAPAR products

The weights,PSFi, of the point spread function (Eq. (2)) describing
the aggregation process of decametric images to obtain the equivalent
hectometric values need thus to be estimated. They account for several
factors (Weiss et al., 2007) including the PSF of the instrument for each
band, the geolocation uncertainty, the effect of the reprojection (from
raw images to plate-carrée then to UMT), the atmospheric scattering,
the viewing geometry and the temporal compositing of the daily hec-
tometric images to produce the dekadal FAPAR values (Baret et al.,
2013b). The PSF is described by truncated Gaussian functions using the
Full Width at Half Maximum independently for the longitudinal
(FWHMx) and the latitudinal (FWHMy) directions (Mira et al., 2015).
The PSF is truncated when> 95% of the contribution to the signal is
reached. The total extent of the PSF defined by (Xmax ,Ymax) thus
depends on the FWHM. Because of possible geolocation differences
between the hectometric and decametric images, a shift in East-West
(Δx) and North-South (Δy) directions is also considered. The four un-
knowns [FWHMx,FWHMy,Δx,Δy] are retrieved by maximizing the
correlation coefficient between the aggregated decametric (Landsat-8)
FAPAR images and the hectometric (GEOV3) FAPAR products ac-
cording to the scheme shown by Mira et al. (2015). For each image pair
of decametric and hectometric images with about the same date, the
[FWHMx,FWHMy] are allowed to vary from 120 m to 960 m by 30 m
steps in both directions, while the Landsat-8 shifts, [Δx,Δy] varied from
−330 m to 330 m by 15 m steps. In total, 379,456 combinations of PSF
values in x and y directions are generated and the one providing the
highest correlation between the actual GEOV3 FAPAR and the ag-
gregated Landsat-8 FAPAR is selected. The aggregated pixels that in-
clude invalid Landsat-8 pixels are discarded from the computation.

Fig. 3. Scheme showing the initialization and backward
modes. The same conventions as used in Fig. 2 to describe
the forward mode are used here.
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3.3. Implementation

The algorithm includes four steps: (1) preparation of the decametric
images to fill possible invalid pixels and make the FAPAR values con-
sistent with the hectometric products; (2) classification of the pixels to
reduce the dimensionality of the problem; (3) adjusting the polynomial
coefficients; (4) and production of the DHF FAPAR value and iterate on
the next local spatial window. These four steps are sketched in Fig. 4
and detailed in the following.

3.3.1. Preparation of the decametric Landsat-8 FAPAR images (step1)
The algorithm combines hectometric resolution data (GEOV3/

PROBA-V) with decametric resolution data (Landsat-8) when available.
The aggregation process described by Eq. (2) requires completeness of
the Landsat-8 image. When a Landsat-8 pixel is flagged as invalid, cloud
or cloud shadow, it is filled using an estimation derived from a second
degree polynomial fit over the 6 corresponding DHF values in the
considered temporal window. When the estimated value is outside the
[0, 0.94] domain of validity for FAPAR, it is set to the closest bound.
This filling process is thus fully consistent with the way DHF products
are generated.

The combination of Landsat-8 and GEOV3/PROBA-V resolution
FAPAR data requires a high degree of consistency between both pro-
ducts. However, some biases may be observed due to differences be-
tween sensor characteristics, atmospheric correction or retrieval algo-
rithms. A correction is therefore necessary to remove these differences
to keep high degree of consistency between the two products. This
correction is applied to the Landsat-8 images that may show less tem-
poral consistency as compared to the GEOV3 FAPAR products that al-
ready results from a temporal compositing. It is calibrated on each

individual Landsat-8 image by comparing the aggregated Landsat-8
FAPAR values using Eq. (2), with the GEOV3 FAPAR value estimated at
the same date. For this purpose, a second-degree polynomial inter-
polation is applied using the 7 dekadal GEOV3 products available over
the temporal operating window. Finally, a linear fit between the ag-
gregated Landsat-8 FAPAR values and the corresponding interpolated
GEOV3 FAPAR values is computed. The corresponding slope and in-
tercept are used to correct the Landsat-8 FAPAR values.

3.3.2. Considering classes rather than pixels and classification (step2)
Running the algorithm over all individual decametric pixels is

computationally very demanding. It was therefore preferred running it
at the class level considering that a limited number of classes may re-
present the dynamics of each Landsat-8 pixel with a good accuracy in a
restricted spatial and temporal window. A classification of each pixel is
made using the FAPAR temporal profiles described by the 6 first DHF
products and the possible Landsat-8 images available. The classification
is applied over the whole image rather than over the local operating
spatial windows to prevent from possible discontinuities between op-
erating spatial windows. The ‘Kmeans’ automatic classification algo-
rithm is used because of its performances and computational efficiency
(Hartigan and Wong, 1979). The algorithm requires the number of
classes to be specified. It should compromise between a large number
required to accurately describe the heterogeneity of the study area and
a limited number of classes to ease the computation. In our case, after
trial and error tests (results not presented for the sake of brevity) 25
classes were selected as optimal. The reduction of the problem size is
thus drastic: 25 sets of coefficients to be estimated in a 3 × 3 hecto-
metric window as compared to> 900 sets of coefficients when con-
sidering the pixels separately.

Fig. 4. Flowchart of the four steps of fusion main algorithm.
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3.3.3. Estimating [ak,bk, ck] coefficients for each class (step3)
The 3 coefficients of the second degree polynomials are estimated

for each individual operating spatial and temporal window according to
the general principles presented earlier. The fitting of the three coeffi-
cients for the 25 classes is completed by minimizing the cost function
[3] under the constraints that the estimated FAPAR values keep within
the physical bounds of FAPAR. The interior-point algorithm (Byrd et al.,
2000; Byrd et al., 1999) is used to estimate coefficients [ak,bk,ck] si-
multaneously for the 25 classes. This algorithm is selected due to its
ability to handle large and sparse optimization problems. The values
from the previous dekad of the same temporal window are used as the
initial guess for the three coefficients of each class. Finally, the FAPAR
value for the last dekad (respectively every dekads for the initialization,
and first dekad for the backward mode) of the temporal window is
computed for each class and then distributed on the spatial operating
window according to the classification map of the corresponding cur-
rent temporal window.

3.3.4. Project DHF products and iterate on the next local spatial window
(step4)

Once the polynomial coefficients of a spatial window are estimated,
the DHF products corresponding to the decametric FAPAR values of the
last day of the considered temporal window is computed. The algorithm
then moves to the next local spatial window in an iterative way, until
DHF FAPAR in all spatial windows are calculated. The new generated
DHF FAPAR data will later participate to the computation of DHF for
the next temporal window.

A quality flag associated to each dekad and pixel of the DHF product
provides information on the number of valid Landsat-8 images avail-
able in the temporal window and the nature of the Landsat-8 pixel (out
of range, cloud, water or snow). Further, two additional quantitative
quality indicators document the difference (1) between the DHF pro-
duct and the possible (corrected) Landsat-8 FAPAR value at the date of
this Landsat-8 image, and (2) between the aggregated DHF value and
the corresponding GEOV3 FAPAR product. Finally, when the estimated
FAPAR value is out of range (including the tolerance margins), a spe-
cific flag is raised.

4. Results

The calibration of the GEOV3 PSF is first presented. Then, the
spatial and temporal consistency of the DHF products is discussed at the
decametric and then at the hectometric resolutions. Finally, the DHF
products are compared with available ground measurements for accu-
racy assessment.

4.1. PSF of the GEOV3 products

We selected six pairs of GEOV3 and Landsat-8 FAPAR images having
less than two days difference on which we adjusted the
[FWHMx,FWHMy,Δx,Δy] parameters (Table 1). Results show that the

correlation between the aggregated Landsat-8 values and the GEOV3
products is always very high (Table 1), providing confidence in the
parameter adjustment. Further, a single prominent maximum of the
correlation coefficient was observed for all the dates when the PSF was
evaluated, confirming the uniqueness of the solution. The optimal
FWHM varies from 270 m to 360 m in the East-West direction, and from
330 m to 360 m in the North-South direction. This led to a PSF full
extent of 810 m≤Xmax≤870 m and 690 m≤Ymax≤870 m, i.e. be-
tween two to three times the GEOV3 ground sampling distance (330 m).
The shift between Landsat-8 and GEOV3 is around 100 m and is rela-
tively constant with time. It is close to 0.3 PROBA-V pixels that corre-
spond to the expected geolocation uncertainty.

Because of the good consistency in the PSF and shift values obtained
across several pairs of Landsat-8 and GEOV3 images, it was proposed to
calibrate the PSF only once over a set of pairs of Landsat-8 and GEOV3
images before triggering the fusion algorithm. The median value of the
PSF and shift observed over the 6 pairs of images (Table 1) were used in
this study for all the Landsat-8 and GEOV3 images over the South-West
site in 2014: [FWHMx,FWHMy,Δx,Δy]=[330,360,105,75]. However,
the PSF probably needs to be recalibrated from site to site, particularly
when the latitude changes because of the impact of the re-projection of
the GEOV3 images into the Landsat-8 grid system.

Finally, the linear relationship between the aggregated Landsat-8
and GEOV3 FAPAR products provides a correction for the Landsat-8
FAPAR (FAPARLandsat_8

original), to get values (FAPARLandsat_8
corrected) that

are more consistent with the GEOV3 FAPAR. Results over the six pairs
of images show that the correction equation appears relatively stable
for the study area (Table 1):

= +FAPAR FAPAR0.84 0.11Landsat
corrected

Landsat
original

8 8 (9)

4.2. Consistency between DHF and Landsat-8 FAPAR products

4.2.1. Temporal consistency
A sample of four pixels located on the edge and center of the image

is used to illustrate the temporal consistency of the products. The ori-
ginal Landsat-8 FAPAR shows artifacts and gaps over the whole year
(Fig. 5), confirming the observations by Li et al. (2015). This may be
due to residual effects of the atmospheric correction and possible di-
rectional effects that are poorly accounted for. The correction of
Landsat-8 FAPAR values achieved using the GEOV3 FAPAR as a re-
ference (see §3.3.1) improves the smoothness. However, some fluc-
tuations are still observed probably because the correction is computed
over all the GEOV3 pixels, averaging possible particularities on some
decametric pixels.

The DHF temporal profile is much smoother than that of the cor-
rected Landsat-8 (Fig. 5). This comes mainly from the polynomials fit-
ting and partly from a possible class averaging effect as well as
smoothness induced by the GEOV3 constraint. However, the general
agreement between DHF and Landsat-8 corrected FAPAR temporal

Table 1
The optimal PSF and shift observed over the 6 pairs of Landsat-8 and GEOV3 FAPAR products. FWHMx (respectively FWHMy) represents the Full Width at Half Maximum in the East-west
(respectively North-south) directions. Xmax (respectively Ymax) represents the full width of the PSF in the East-west (respectively North-south directions).Δx (respectively Δy) represents
the Landsat-8 image shift in East-west (respectively North-south) directions with the starting reference on the top-left corner of GEOV3 pixel.

Date FWHM (m) Full width (m) Shift (m) R2 Correction

GEOV3 Landsat-8 FWHMx FWHMy Xmax Ymax Δx Δy Slope Offset RMSE

10/02/2014 12/02/2014 330 360 870 810 105 75 0.83 0.84 0.07 0.07
10/03/2014 09/03/2014 360 360 870 870 105 105 0.87 0.92 0.08 0.08
10/04/2014 10/04/2014 330 360 870 810 105 75 0.88 0.84 0.07 0.07
20/05/2014 19/05/2014 270 330 810 690 75 15 0.85 0.79 0.08 0.08
20/06/2014 20/06/2014 330 360 870 810 105 75 0.87 0.80 0.05 0.05
31/08/2014 01/09/2014 330 360 870 810 105 75 0.92 0.94 0.07 0.07
Median 330 360 870 810 105 75 0.87 0.84 0.11 0.07
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profiles indicates that very little information was lost when operating
the algorithm at the class level rather than at the pixel level. The pre-
dicting capacity of the algorithm is demonstrated at the beginning of
the year when no Landsat-8 images are available: in this case, DHF
provides reasonable estimates of FAPAR using the information coming
from the GEOV3 FAPAR.

4.2.2. Spatial consistency
The spatial distribution of DHF FAPAR products is evaluated by

mapping the difference with the original Landsat-8 FAPAR and cor-
rected Landsat-8 FAPAR over two particular dates.

On March the 16th corresponding to the first temporal window
(DOY 41–DOY 100), the original Landsat-8 FAPAR is almost complete
(no clouds), although it shows several small gaps due to the input re-
flectance or output FAPAR out of the expected range as well as gaps on
the border of the image (Fig. 6a). The corrected Landsat-8 FAPAR
shows the same gaps as in the original Landsat-8 FAPAR image because
no temporal interpolation is performed in the first temporal window.
The estimated DHF image (Fig. 6c) presents a spatial distribution very
close to the corrected Landsat-8 images (Fig. 6b) with a RMSE value of
0.04 (Fig. 6d). The larger differences between DHF and original
Landsat-8 FAPAR are mainly due to the inherent bias between Landsat-
8 and GEOV3 FAPAR. Note that the DHF image (Fig. 6c) presents a
border of 330 m width with missing values due to the PSF effect of
GEOV3 products.

On the 31st of July, the algorithm is run in the forward mode (DOY
161–DOY 222). The Landsat-8 original image shows a significant frac-
tion of pixels contaminated by clouds (Fig. 7a). Cloudy pixels are filled
with the values computed from the polynomial fit of the existing DHF
values. The correction factor to get Landsat-8 FAPAR values consistent
with those of GEOV3 may therefore be slightly biased. Indeed, the
cloudy pixels are filled with DHF products generated from already
corrected FAPAR values. The bias should therefore be maximum when
clouds represent 50% cover fraction. However, the gap filling is man-
datory since the computation of the correction requires aggregating the
Landsat-8 pixels to be compared with those of GEOV3. But the pro-
jection corresponding to the application of the polynomial function on
dates out of the period where it was adjusted can lead to values out of
the expected range. These pixels will be flagged as invalid and will not
be used (Fig. 7b). The DHF derived FAPAR (Fig. 7c) shows a complete
spatial coverage and agrees well with the corrected Landsat-8 FAPAR
(Fig. 7d), with however degraded performances (RMSE = 0.08) due to
the presence of clouds and the associated loss of information. Never-
theless, the spatial patterns appear quite well preserved, even at the
location of the clouds on the Landsat-8 image.

4.2.3. Validation of DHF using the leave-one-out method
The performances of the DHF products are evaluated by comparison

with each individual Landsat-8 derived FAPAR values. However, to
better evaluate the accuracy of the DHF products without comparing

Fig. 5. Temporal distribution of DHF FAPAR, corrected Landsat-8 FAPAR and original Landsat-8 FAPAR over the four sample pixels in 2014. Row and Col correspond to the position of
the decametric pixel in the whole 30 km× 30 km study area (Fig. 1).

Fig. 6. Spatial distribution observed over Southwest site on 16 March 2014 of (a) the original Landsat-8 FAPAR; (b) the corrected Landsat-8 FAPAR; (c) the DHF FAPAR; (d) the
relationship between the corrected Landsat-8 and the DHF FAPAR values. Black pixels represent invalid pixels due to clouds, cloud shadow, water, snow or image borders.
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with the Landsat-8 images that were used in the algorithm, a leave-one-
out method was introduced: a Landsat-8 image will not be used in the
algorithm and the resulting DHF product will be compared to this
Landsat-8 image derived FAPAR values. This process is repeated on
each Landsat-8 image of the time series. The initial temporal window is
not used in the leave-one-out test, therefore the first Landsat-8 mea-
surement date starts from DOY107 of 2014. This analysis is performed
on a sub region of 5 km × 5 km area for computation efficiency. The
DHF products are interpolated at the date of the Landsat-8 image. The
comparison is achieved both with the original Landsat-8 derived FAPAR
values as well as with the corrected Landsat-8 FAPAR values ensuring
better consistency with the GEOV3 FAPAR products.

As expected, results show that the correction of the Landsat-8 de-
rived FAPAR products improves significantly the agreement with the
DHF products (Table 2). The correction improves the RMSE by 0.05, R2

by 0.04 and the bias is reduced by 0.01 both for the leave-one-out DHF
version (remove) and the DHF computed using all the Landsat-8 images
(used) (Table 2).

The DHF computed with all the Landsat-8 images available used
(used in Table 2) agrees well with the Landsat-8 corrected FAPAR va-
lues with 0.05 < RMSE < 0.12, 0.66 < R2 < 0.97 and
−003 < bias < 0.03 (Table 2). When comparing with the corrected
Landsat-8 FAPAR image not used to compute the DHF product (remove
in Table 2), the RMSE and R2 degrades only slightly. This demonstrates
the robustness of the proposed algorithm for estimating DHF FAPAR
values on most situations. However, the algorithm partly fails on
DOY171 (RMSE = 0.12 and R2 = 0.47 in Table 2), when no Landsat-8

FAPAR is used to document the high rate of change of FAPAR profile as
observed here during the senescence period of winter crops.

4.3. Consistency between aggregated DHF FAPAR and original GEOV3
FAPAR products

Four GEOV3 pixels located on the edge and center of the GEOV3
image are selected for visual inspection of the temporal consistency
between the DHF FAPAR aggregated at GEOV3 FAPAR spatial resolu-
tion using the PSF (Eq. (2)) and the original GEOV3 FAPAR. Results
(Fig. 8) confirm the expected very good agreement between the dy-
namics of both FAPAR values. However, some small differences are
observed due to remaining discrepancies between the Landsat-8 FAPAR
corrected values and the GEOV3 products.

The consistency between both products is further analyzed by
comparing their spatial distribution for three specific dates: doy 10 in
the backward mode, doy 100 in the first initial temporal window and
doy 283 in the forward mode. Results (Fig. 9) show a very good
agreement (R2 = 0.81–0.9, RMSE = 0.03–0.06) between the ag-
gregated DHF FAPAR images and GEOV3 FAPAR for these three dates.
However, some missing values are observed on the aggregated DHF
image. This can be due to FAPAR values estimated out of the physical
range, which prevents from applying the aggregation process. These
situations mostly correspond to low values of FAPAR and when a lim-
ited constraint by the Landsat-8 information is imposed because of large
cloud contamination of the Landsat-8 images.

A systematic evaluation of the RMSE values computed over each

Fig. 7. Spatial distribution observed over Southwest site on 31 July 2014 of (a) the original Landsat-8 FAPAR; (b) the corrected Landsat-8 FAPAR; (c) the DHF FAPAR; (d) the relationship
between the corrected Landsat-8 and the DHF FAPAR values. Black pixels represent invalid pixels due to clouds, cloud shadow, water, snow or image borders.

Table 2
RMSE, R2 and Bias between DHF products and the original (‘Original’) or corrected (‘Corrected’) Landsat-8 products on each Landsat-8 measurement date. The DHF FAPAR products were
generated using either all the Landsat-8 images available (‘Used’) or when the Landsat-8 image used for performance evaluation was removed (‘Remove’) from the time series for DHF
computation using the leave-one-out method.

Day of year

107 132 139 164 171 180 196 203 212 228 244 260 276

RMSE
Remove/Original 0.115 0.095 0.138 0.100 0.133 0.156 0.171 0.139 0.135 0.159 0.161 0.175 0.164
Remove/Corrected 0.078 0.053 0.113 0.088 0.120 0.099 0.140 0.072 0.101 0.090 0.126 0.125 0.119
Used/Original 0.090 0.090 0.090 0.080 0.080 0.100 0.120 0.140 0.110 0.130 0.160 0.130 0.160
Used/Corrected 0.050 0.050 0.070 0.070 0.070 0.060 0.090 0.070 0.070 0.060 0.120 0.090 0.100

R2

Remove/Original 0.915 0.894 0.810 0.717 0.473 0.555 0.656 0.825 0.826 0.657 0.577 0.590 0.641
Remove/Corrected 0.915 0.957 0.810 0.727 0.471 0.705 0.684 0.909 0.828 0.853 0.578 0.590 0.641
Used/Original 0.960 0.918 0.933 0.818 0.800 0.826 0.878 0.815 0.907 0.815 0.660 0.759 0.748
Used/Corrected 0.960 0.965 0.933 0.824 0.799 0.884 0.884 0.909 0.908 0.905 0.661 0.759 0.748

Bias
Remove/Original 0.058 −0.019 0.054 −0.020 0.008 −0.013 0.004 −0.022 0.053 −0.065 0.054 0.095 0.079
Remove/Corrected 0.034 −0.012 0.039 −0.038 −0.025 −0.004 −0.031 −0.039 0.012 −0.046 −0.001 0.032 0.012
Used/Original 0.043 −0.014 0.038 −0.012 0.017 −0.006 0.013 −0.011 0.043 −0.054 0.074 0.056 0.093
Used/Corrected 0.019 −0.010 0.023 −0.031 −0.015 −0.016 −0.021 −0.031 0.004 −0.034 0.019 −0.007 0.026
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dekad of the time series confirms the very good agreement between the
aggregated DHF FAPAR products and the GEOV3 FAPAR values
(Fig. 10). The RMSE ranges from 0.03 (DOY 31) to 0.08 (DOY 253).

4.4. Validation with ground measurements

The FAPAR values measured with DHP over the 14 sunflower ESUs
available along the growing season are compared with the DHF and
original or corrected Landsat-8 FAPAR values. To minimize the effect of
the delay between the date of the ground measurements and that of the
Landsat-8 FAPAR products, the ground FAPAR measurements are lin-
early interpolated at the Landsat-8 image acquisition dates if there
is< 5 days difference. This resulted in 29 data points. Conversely, for
comparing the DHF products with the ground measurements, the DHF
products are interpolated at the ground measurements dates since DHF
products are dekadal smooth products. Results focusing on the 29 data

points used for comparison with the original or corrected Landsat-8
data show that the original Landsat-8 FAPAR correlates well with the
ground measurements (Fig. 11a). The performances are only slightly
improved after the correction using GEOV3 FAPAR (Fig. 11b). Both
Landsat-8 FAPAR estimates have 75% of the points within the Global
climate observing system (GCOS) requirements (dotted lines in Fig. 11)
(max 10% accuracy, GCOS, 2011). Over the same 29 points, the per-
formance of DHF FAPAR is very close to the original and the corrected
Landsat-8 FAPAR data (Table 3). Finally, the DHF FAPAR products
were compared with 36 additional available ground measurements over
the sunflower fields. They correspond to ground data collected outside
the± 5 days period around the Landsat-8 image dates. Results over the
total 65 point data available show a slight degradation of the perfor-
mances (Fig. 11c, Table 3) with some underestimation for the medium
to large FAPAR values. Nevertheless, still 75% of the points are lying
within the GCOS requirements for FAPAR products.

Fig. 8. Temporal distribution of estimated GEOV3 from aggregation of DHF FAPAR and original GEOV3 FAPAR profiles. Four sample pixels are selected on the center or edge of GEOV3
images.

Fig. 9. Spatial distribution of (a, d, g) original GEOV3 FAPAR, (b, e, h) aggregated DHF FAPAR at GEOV3 spatial resolution and (c, f, i) frequency of their differences; (a, b, c) correspond
to DOY 10, (d, e, f) to DOY 100 and (g, h, i) to DOY 283.
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5. Discussion

The proposed DHF algorithm uses a biophysical product, FAPAR,
which is assumed to present a smooth dynamics as outlined earlier. An
alternative method was proposed by Lewis et al. (2012) using re-
flectance as inputs and outputs of an assimilation scheme. It preserves
the spectral consistency thanks to a radiative transfer model. Such ap-
proaches are thus very appealing as already outlined by Geiger et al.
(2004). The spectral consistency between the decametric and hecto-
metric data is also well preserved in the DHF algorithm since the fusion
between the two resolution data is achieved at the biophysical FAPAR
product level.

The proposed DHF algorithm is based on a physically sound ap-
proach that bears on two main assumptions: (1) the smoothness of the
FAPAR temporal course over a restricted temporal window (60 days in
this case) and (2) the scaling independency of FAPAR. The first as-
sumption is mostly verified over the study site considered here.
However, it may be violated particularly in case of harvest occurring

during the vegetation growth cycle such as for cultivated grasslands,
silage maize, forest clear cut or when hazards are suddenly changing
the surface characteristics such as fire or flood events. The second as-
sumption on the scaling properties appears to be largely verified ac-
cording to the good agreement observed between the decametric DHF
or Landsat-8 aggregated FAPAR products and the GEOV3 hectometric
products. The algorithm provides smooth and consistent FAPAR esti-
mates at the decametric resolution, with an accuracy close to
RMSE ≈ 0.1 while 75% of the values are within the GCOS require-
ments. The good performances of the algorithm are also coming from
the fact that the hectometric constraint is relatively strong since only a
limited number of classes of land cover are contained in a hectometric
pixel as compared to what is contained in a kilometric pixel for which
the constraint would be much weaker. Although the ground validation
exercise was restricted to sunflower crops, the good agreement between
the original Landsat-8 and the DHF values observed with the leave-one-
out method indicates the potentials of the proposed method.

The performances of the DHF algorithm were evaluated using
GEOV3/PROBA-V dekadal FAPAR products and Landsat-8 images over
a place where the Landsat sensor swaths are overlapping between two
consecutive tracks, dividing by about two the 16 days nominal Landsat-
8 revisit period. Over the considered time series and site, the actual
average delay between two consecutive clear pixels was around 20 days
due to cloud coverage if the whole year is considered. It is reduced to
around 12 days during the growing season because only few images are
taken at the beginning or the end of year. The results of the leave-one-
out validation test demonstrated that the performances are only little
dependent on the presence of the last Landsat-8 image before the

Fig. 10. The seasonal variation of RMSE between aggregated
DHF FAPAR at GEOV3 spatial resolution and original GEOV3
FAPAR in 2014 over Southwest site.

Fig. 11. Comparison of the ground FAPAR measurements with (a) the original Landsat-8 FAPAR, (b) the corrected Landsat-8 FAPAR and (c) the DHF FAPAR products. Results observed
on 29 data points over the 14 sunflower fields. Each field corresponds to a particular color. The black solid line is the 1:1 line. Dotted lines represent the GCOS (2011) requirements
boundaries.

Table 3
Comparison between the ground FAPAR measurements and the original Landsat-8
FAPAR, the corrected Landsat-8 FAPAR and the DHF FAPAR products. N represents the
number of ground data used in the validation.

N R2 Bias RMSE Linear regression

Original Landsat-8 29 0.76 −0.04 0.104 y = 0.94x + 0.01
Corrected Landsat-8 29 0.78 −0.05 0.102 y = 0.82x + 0.08
DHF FAPAR 29 0.75 −0.09 0.12 y = 0.84x + 0.02
DHF FAPAR 65 0.66 −0.07 0.11 y = 0.87x + 0.04
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considered dekadal date when the DHF product is computed. However,
further investigation should evaluate the actual impact of the number of
clear decametric observations on the product performances.

The recent availability of the Sentinel-2 (Drusch et al., 2012) and
Sentinel-3 (Donlon et al., 2012) images will probably reinforce the in-
terest of this type of algorithm, particularly in places with frequent
cloud occurrence. The PSF of the FAPAR products derived at the hec-
tometric resolution with Sentinel-3 should be properly calibrated. Al-
though the PSF appeared to be relatively stable over time on the studied
site, this should be further verified in more diversified situations, par-
ticularly regarding the expected effect of the latitude of the site.

6. Conclusion

This study presented an algorithm to generate a dekadal FAPAR
product at decametric resolution from the combination of existing
decametric (Landsat-8) and hectometric (GEOV3) FAPAR products. It
applies to any vegetation type without prior knowledge on the land
cover. The method can be run in near real time mode. The proposed
method assumes that FAPAR time course can be described by a second-
polynomial function during a 60-days temporal window for each
decametric pixel. The coefficients of the polynomial function are opti-
mized using temporal courses of the available Landsat-8 FAPAR and
GEOV3 FAPAR. The generated DHF FAPAR captures faithfully the
temporal and spatial distribution of Landsat-8 FAPAR, and improves the
temporal resolution and smoothness of Landsat-8 FAPAR. Using the
leave-one-out method, the DHF FAPAR products correspond well with
the Landsat-8 FAPAR (RMSE = 0.05–0.14) that are not used in the DHF
algorithm. The DHF FAPAR products show also good agreement with
ground measurements over 14 sunflower fields (RMSE = 0.11,
R2 = 0.66). Further developments of the algorithm would include its
application to the actual Sentinel-2 and Sentinel-3 datasets, as well as
its adaptation to other biophysical variables such as LAI.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2017.08.018.
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