SOILS, SEC 1 • SOIL ORGANIC MATTER DYNAMICS AND NUTRIENT CYCLING • RESEARCH ARTICLE

Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization

Muhammad Nadeem Ashraf¹ · Cheng Hu² · Lei Wu¹ · Yinghua Duan¹ · Wenju Zhang¹ · Tariq Aziz³ · Andong Cai^{1,4} · Muhammad Mohsin Abrar¹ · Minggang Xu¹

Received: 21 January 2020 / Accepted: 22 April 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Purpose Soil microbial biomass (SMB), as the source and sink of soil nutrients, and its stoichiometry play a key role in soil organic carbon (SOC) and nitrogen (N) mineralization. The objective of this study was to investigate the responses of SOC and N mineralization to changes in microbial biomass and SOC, N, and phosphorus (P) stoichiometry resulted from long-term fertilization regimes. **Materials and methods** Soil was sampled from a rice-wheat rotation system subjected to 37 years of nine fertilization treatments with different nutrient input amounts: control (CK), N alone, N combined with mineral phosphorus (NP), NP plus potassium (NPK), manure alone (M), and M combined with N (MN), NP (MNP), NPK (MNPK), and a higher rate of M with NPK (hMNPK). The sampled soil was incubated for the determination of SOC and N mineralization, C, N, and P stoichiometry of soil and SMB, and associated soil enzymes related to C and N cycling.

Results and discussion Relative to the CK and treatments with mineral fertilizers, treatments with manure (M, MN, MNP, MNPK, and hMNPK) significantly increased SOC and N mineralization by 48–78% and 54–97%, respectively. Microbial metabolic quotient (qCO_2) decreased by 32–55% in treatments with manure compared to the N and NP treatments, but showed no effect on the qCO_2 when compared to the NPK treatment. The leucine amino peptidase (LAP) enzyme showed significant positive correlation with SOC and N mineralization, and negatively related to the qCO_2 . Significantly negative correlations were also observed between SOC and N mineralization and soil C:P and N:P ratio, as well as microbial biomass SMBC:SMBP and SMBN:SMBP stoichiometry, respectively. However, the availability of N and P had limited effects on the qCO_2 after reaching a certain value (0.69–0.72 mg CO₂-C g⁻¹ MBC h⁻¹). **Conclusions** Lower soil elemental (C:P and N:P) and microbial biomass stoichiometry (SMBC:SMBP and SMBN:SMBP) and increase of LAP resulted from combined application of manure and mineral fertilizers, accelerated SOC, and N mineralization. Mineral nutrient input with manure amendments could be an optimal strategy to meet the microbial stoichiometric demands and enhance nutrient availability for crops in agricultural ecosystems.

Keywords Stoichiometry \cdot SOC mineralization \cdot Nitrogen mineralization \cdot Microbial biomass \cdot Nutrient availability \cdot Long-term fertilization

Responsible editor: Weixin Ding

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11368-020-02642-y) contains supplementary material, which is available to authorized users.

Wenju Zhang zhangwenju01@caas.cn

- ¹ National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
- ² Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, People's Republic of China
- ³ Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
- ⁴ Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China