聚乙烯包膜肥料控释膜层结构特征研究

杨相东,李娟,孙明雪,乔丹,张建君,李春花

(中国农业科学院农业资源与农业区划研究所/农业农村部植物营养与肥料重点实验室,北京100081)

摘要:【目的】包膜肥料控释膜层结构和孔隙性质直接影响其养分释放速率。研究包膜肥料膜层结构特征,可 以明确膜层结构参数与养分释放速率的关系,揭示包膜肥料控释机制,为建立养分释放数理模型提供理论依 据。【方法】以聚乙烯包膜肥料控释膜层作为研究对象,量化研究了聚乙烯喷涂控释膜层的结构特征参数。利 用扫描电镜,观测了在不同放大倍数下,采用喷涂工艺制备的聚乙烯包膜肥料膜层的外表层、横断面和内表层 特征;以压汞仪测定了膜上孔隙的大小和分布;采用泡点法研究了大孔隙的最大孔径。【结果】不同放大倍数 下的扫描电镜观测结果表明,喷涂法制备的包膜肥料控释膜层外表面整体上光滑、平整、均匀、疏松,但局部 存在少量孔隙,孔径主要分布在1000~50 nm 的范围内;在放大倍数很高的情况下,整体上膜层无细微孔隙结 构。控释膜层厚度约为 60~100 μm,断面形貌疏松无孔。膜层内表面粗糙,高低起伏不平、犬牙交错。膜壳材 料堆密度为 0.4~0.8 g/mL,低于聚乙烯密度,属于疏松结构。孔隙结构分析结果表明,聚乙烯控释膜层的中值 孔径为 4.5~5.3 nm,与对比的聚乙烯薄膜基本一致,说明两种膜分子链间的细微结构没有差异;但是聚乙烯控 释膜层中存在占比 18% 的直径约为 1000~50 nm 的较大孔,孔径小于 10 nm 的间隙占 82%,进一步说明占比少 的大孔影响控释膜层释放性能。喷涂控释膜层总孔体积在 0.4686~1.2260 mL/g, 平均孔径在 25.1~86.8 nm 范围 内, 孔隙率为 33.0%~50.6%, 显著高于拉伸工艺制备的聚乙烯薄膜。释放期在 1~6 个月的包膜控释肥料, 最 大孔径在 990~480 nm 的范围,随包膜肥料释放期的增加,膜孔直径逐步减小,说明包膜控释肥料养分释放速 率与其最大孔径存在内在联系。【结论】综合3种方法的测定结果,聚乙烯控释膜层可以看作是膜层均匀致密 且局部有孔隙, 膜壳直径 3 mm, 膜层厚度约为 50 µm, 最大孔径为 1 µm, 平均孔径为 50 nm 的密闭球形壳 体。最大孔是水分和养分进出膜层的主要通道,决定了包膜肥料养分释放速率的快慢。 关键词:包膜控释肥料;聚乙烯;膜层结构;孔隙参数;释放特性

Morphological structure and pore property of polyethylene controlled-release film sprayed on urea

YANG Xiang-dong, LI Juan, SUN Ming-xue, QIAO Dan, ZHANG Jian-jun, LI Chun-hua (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China)

Abstract: [Objectives] The morphology and pore properties of the controlled-release film directly affect the nutrient release rate of polyethylene (PE) -coated fertilizer. The study on them will help predicting the relationship between the structure parameters of PE films and nutrient release rate of a coated fertilizer more precisely.

(Methods) Polyethylene coating fertilizer samples were all prepared by spraying process in the study. The surface morphology, pore structure and maximum membrane pore sizes of the obtained controlled-release fertilizers (CRFs) were quantitatively measured using scanning electron microscopy, mercury porosimeter and water immersion method. **(Results)** The films of CRFs were smooth, uniform and loose, a few of holes were observed, which were mainly distributed in the range of 1000–50 nm. The thickness of the controlled-release

收稿日期: 2019-08-02 接受日期: 2019-11-29

基金项目:国家重点研发计划课题(2017YFD0200703);国家自然科学基金项目(31572204,31872177);中央级公益性科研院所基本科研业务费专项(1610132017011)。

联系方式:杨相东 Tel: 010-82109614, E-mail: yangxiangdong@caas.cn

film was about 60–100 μ m, and the inner surface of the film was rough. The total pore volume of the film was in range of 0.4686–1.2260 mL/g, and the average pore diameter was in range of 25.1–86.8 nm, the porosity rate was in range of 33.0%–50.6%, and the structure was loose. The maximum pore size of CRFs ranged from 990 to 480 nm with a release period of 1 to 6 months. **[Conclusions]** Comprehensively considering the results from the three measurement methods, the controlled-release PE film is generally an even and closed spherical shell, and about 50 microns in thickness. The membrane is roughly continuous and evenly compact with diameter of 3 mm. However, there are pores of average 50 nm in the partial position, and the maximum pore is about 1 μ m. The maximum pores are the main pass of water and nutrient, determining the release rate of nutrients in the CRFs.

Key words: coated controlled-release fertilizer; polyethylene; membrane structure; pore parameters;

release characteristics

包膜肥料养分释放能够与作物养分吸收同步, 既能满足肥料-土壤-作物生产系统养分供需平衡, 还能减少施肥次数和用量,提高化肥利用率,是一 种应用前景广阔的新型肥料。包膜肥料的释放性能 由控释膜层决定,研究包膜肥料膜层结构特征,对 于明确膜层结构参数与养分释放速率的关系,揭示 包膜肥控释机制有着极其重要的作用。大量的研究 表明,膜层上存在一些较大的孔隙^[1-3],一般认为这 些大孔隙是控释肥料的缺陷,是导致控释能力差的 根源。另外的研究认为,膜层孔结构与养分释放速 率存在一定的相关关系^[4-5]。因此,研究控释膜层结 构特征,量化结构参数,不但可以揭示养分释放的 机理,还能够指导控释肥料制备工艺。

电镜扫描是观察控释膜层微观结构的重要技术 手段,但受电镜技术、包膜材料和制备工艺等因素 的限制, 膜层微观结构特征一直难以量化。BASF 和 Chisso-Asahi 肥料公司¹⁰最早采用电镜扫描观察了 膜层形貌, 电镜图片显示控释膜厚度为 50~60 µm, 断面参差不齐,认为控释膜是带有微孔的半透膜或 不透膜。毛小云等印观察了矿物型膜材包膜肥料膜 层,其基本结构特征为:不规则的层状堆叠,叠层 间有微小空隙, 膜层内表面呈不规则形状。李方敏 等18认为控释膜层呈均匀致密的层状叠加排列,表面 光滑,有少量微粒状凸起,叠层间有微小的孔隙, 控释膜层厚度为 34~54 μm。秦裕波等¹⁹的研究认为 膜层比较薄,无断裂,但膜层中存在较明显的气 泡, 膜层表面有较多杂质。这些研究勾勒出聚合物 控释膜层致密、有凹凸、有微孔的基本特征。但是 受电镜成像照片分辨率不高和观测材料过少的限 制, 仅定性描述了控释膜层的大致形貌, 其结构参 数并没有深入揭示。杨相东等伸通过扫描电镜、压汞 仪测定了控释膜层结构参数,证实控制不同工艺条 件,能够获得孔径大小不同的控释膜层;另外,

Wei 等^[10]发现控释膜的渗透系数是拉伸膜的 1000~2700 倍,推测控释膜层为疏松多孔膜;进一步的研究还揭示了膜层上具有很多的孔隙,而且大孔隙与释放速率具有一定相关性^[5]。越来越多的研究均表明控释膜层具有孔,孔隙参数与释放速率之间存在一定的数理关系。

然而获得控释膜层定量化的孔隙结构参数,依 然是比较困难的。综合利用扫描电镜、压汞仪和泡 点法来表征控释膜孔结构、最大孔径等参数^[11-13],可 以从不同角度系统描述控释膜层结构特征。聚乙烯 包膜控释肥料根据相转化原理成膜,溶剂挥发和喷 涂缺陷是致孔的主要因素,由物理过程主导,与反 应成膜不同,喷雾相转化法包膜过程易产生加工孔 隙。为此本研究以聚乙烯包膜肥料作为研究对象, 采用扫描电镜^[14]、泡点法^[15]、压汞仪^[10]等测试手段, 对控释肥料样品膜壳进行大量观测,系统研究聚乙 烯包膜控释肥料的膜层结构特征参数。这对进一步 研究控释膜层结构与释放性能的关系,揭示膜层结 构对养分释放的制约机制,提高控释肥料控制工艺 和性能具有十分重要的意义。

1 材料与方法

1.1 试验材料

试验共采集聚乙烯包膜控释肥料样品 17 个,其 中 6 个来自中国农业科学院农业资源与农业区划研 究所,5 个来自中国农业大学,3 个来自山东农业大 学,日本 Meister、德国 Compo 及金正大生态工程集 团股份有限公司各 1 个,释放期在 1~6 个月的范围 内,包膜控释肥料控释性能等信息见表 1。聚乙烯包 膜控释肥料的制造方法:首先将聚乙烯和石蜡溶解 于四氯乙烯中制成包膜溶液,然后使用流化床包膜 设备将包膜液喷涂包裹在大颗粒尿素上制造而成。 具体方法可参考曹一平等的发明专利^[17]。

样品代码 Sample code	样品来源 Sample donator	初溶率 (%) Initial release rate	微溶率 (%) Differential release rate	释放期 (d) Release period	所在图表 Figures and tables appeared
M1	Meister (日本 Japan)	0.12	0.70	115	图 3 Fig.3
M2	Compo (德国 Germany)	0.31	0.63	127	图 5 Fig.5
M3	金正大生态工程集团股份有限公司 Kingenda Int. Ltd. (China)	0.20	0.76	106	图 5 Fig.5
M4	中国农业大学	0.14	0.66	122	表 3、表 4 Table 3, Table 4
M5	China Agricultural University	0.30	0.92	88	表 3、表 4 Table 3, Table 4
M6		0.62	1.32	61	表 3、表 4 Table 3, Table 4
M7		1.70	1.80	45	表 3、表 4 Table 3, Table 4
M8		2.90	2.60	31	表 3、表 4、图 7 Table 3, Table 4, Fig. 7
M27	中国农科院农业资源与农业区划所	0.27	0.90	89	图 2、图 7 Fig.2, Fig. 7
M28	IARRP, CAAS	0.31	1.26	64	图 3、图 9 Fig. 3, Fig. 9
M31		0.13	1.29	63	图 5 Fig. 5
M32		0.30	1.23	66	图 7 Fig. 7
M33		0.24	0.68	118	图 4 Fig. 4
M36		0.13	0.43	186	图 3 Fig. 3
H9	山东农业大学	1.56	1.28	62	图 3 Fig. 3
H10	Shandong Agricultural University	2.89	0.76	102	图 3 Fig. 3
H13		2.11	1.51	53	图 3 Fig. 3

表 1 控释肥料的基本参数信息 Table 1 Basic parameter information of controlled release fertilizers

注(Note): IARRP, CAAS—Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences.

1.2 仪器

紫外分光光度计(UV-VIS Recording Spectrophotometer),UV-2201型,日本SHIMADZU 公司制造。研究中涉及3种型号的扫描电镜(SEM), 分别是:JSM-7401F型,日本JOEL公司制造; S-4800型和S-8010型,日本Hitachi公司制造。压 汞仪(Mercury Porosimeter),AutoporeIV 9510型,美 国 Micromeritics公司制造。过程材料完整性测试仪 (PMA800),南京高谦功能材料科技有限公司制造。 电子天平(Electron balance),PT120型,德国 Sartorius公司制造。生化培养箱,HPS-250型,哈尔 滨市东明医疗仪器厂制造。光学显微镜,CX22型, 日本奥林巴斯公司制造。

1.3 扫描电镜 (SEM)、压汞仪和最大孔径的试验 测定方法

扫描电镜观测控释肥料的预处理方法:用镊子 固定控释肥料颗粒,使用切片刀把颗粒剖切成二分 之一的球面,用水溶解膜内部的尿素,之后将膜清 洗3次以上,真空干燥12h,得到纯净的控释膜备用。在载物台上平铺一层导电双面胶,将处理好的 膜层样品粘在载物台上;喷金处理后可用于SEM观 察膜的表面结构。观察断面时,使用液氮脆断得到 的横断面,因聚乙烯不易冻脆,也可撕裂出断面。

压汞仪测定孔隙性所需膜壳同于扫描电镜的预 处理。称取清洗干净的上述处理的控释膜壳 1.00 g, 放置于样品池内,直接测定其孔隙性。

完整性测试仪测定最大孔径的预处理方法:称 取 10.00 g 包膜尿素,放入 250 ml 塑料瓶中,加入 200 mL 去离子水,浸泡 3 天后取出,用去离子水冲 洗 3 次,放入表面皿中,在 60℃下干燥 2 h。随机 取出表面有尿素结晶的肥料颗粒,切去一个五分之 二的球面。然后用去离子水溶解掉被包裹的尿素, 清洗 3 次,放入 60℃ 的干燥箱内真空干燥 12 h,得 到纯净的控释膜。使用密封胶将其边缘粘接固定在 小塑料管上,利用泡点法测定膜层的最大孔径¹⁵。

1.4 控释肥料养分释放性能的水浸泡试验方法

使用水浸泡法测定包膜肥料氮素控释性能的具

25 卷

体操作是:称取10.00g包膜肥,装入尼龙网袋中, 放置到具盖塑料瓶内,然后加入200mL去离子水, 盖好瓶盖,放入25℃的恒温箱内静止浸提。每个样 品设3次重复。取样测定时间为1、4、7、10、14、 21、28天。每次取样时,把塑料瓶中的浸提液全部 倒出,用于氮素的测定;同时加入200mL去离子水 置于恒温箱内继续浸提。尿素采用对二甲氨基苯甲 醛-分光光度法测定¹⁸。

1.5 数据处理

试验数据采用 Microsoft Excel 2010、Origin 8 进 行处理和绘图。

2 结果与分析

2.1 聚乙烯控释膜层 SEM 表面和断面形貌结构 特征

2.1.1 大颗粒尿素表面典型形貌特征 放大 25 倍 下,扫描电镜观察的大颗粒尿素如同一个土球,表 面凹凸不平(图1)。将 25 倍图的白框部分放大到 100 倍,这种如土壤状态的表面尤为明显。将 100 倍 图的白框部分继续放大到 500 倍,可观察到大小不 同的尿素粒子紧密地堆附在一起,上下高低相差可 达 100 μm,大颗粒尿素表面凹凸不平、疏密相间的 特征更加明显。将 500 倍图的白框部分放大到 1000 倍,尿素晶体的轮廓显现出来,大的如同石块,小 的如同尘土。继续放大到 5000 倍,如尘土一样的尿 素晶体轮廓也开始呈现出来,尿素晶体基本呈条柱 状,截面长宽在 0.5~3.0 μm×0.5~3.0 μm 的范围, 高度在 1~10 μm。继续放大到 20000 倍,整个大颗 粒尿素呈现出由晶形大小不同的尿素晶体堆积覆盖 而成的特征。由此可见,大颗粒尿素是由尿素晶体 堆砌而成,表面由尿素晶体覆盖,凹凸不平,粗糙 疏松。

2.1.2 聚乙烯包膜肥料膜层表面典型形貌结构特 征 以样品 M27 的膜壳作为观察对象 (释放期约 3个月),使用 SEM 研究控释膜层表面形貌结构特 征,结果如图2所示。在放大25倍时,包膜尿素表 面明显有一膜层, 膜层连续平整。放大到100倍, 可观察到膜层连续,具有喷涂的痕迹,存在一些凹 陷或凸起。500 倍下, 膜层表面连续平整, 具有喷涂 的痕迹,局部粗糙,有粘附的颗粒,能观察到一些 深陷的地方,类似直径较大的深坑。继续放大到 1000倍,连续平整的特征成为主体,喷涂的痕迹更 加明显。放大到 5000 倍,依然是略有起伏的连续 的平整的表面,在不刻意查找的情况下,并无孔 隙。放大到 50000 倍,表面基本平整,也观察不到 孔隙存在,从标尺来看,观察不到纳米尺度的孔 隙。因此,整体而言, 控释膜是均匀、连续且无孔 的膜壳。

图 3 是控释性能良好的另外 6 种包膜肥料在放

图 1 大颗粒尿素表面典型形貌特征 Fig. 1 Typical surface morphology of large granulated urea

大到 5000 倍时的膜层表面形貌。虽然各样品的形貌 略有差异,但均呈现出共同的特征:略有起伏、连 续、平整的表面并无微小孔隙。与图1相比,包膜 肥料表面明显覆盖了一层膜,且这层膜完全遮盖住 了棱柱状的尿素晶体。

另外,在观察控释肥料膜层结构特征的研究 中,先后使用过不同型号的扫描电镜,对来源不同 的聚乙烯包膜样品进行研究,发现大多数控释性能

图 3 聚乙烯包膜肥料膜层表面典型的无孔形貌特征 Fig. 3 Typical nonporous morphology of the surface of polyethylene coated fertilizer film [注(Note): M1、H9、H10、H13、M28、M36—肥料样品代码 Codes of fertilizer samples.] 良好的样品都表现出均匀、连续且无孔的膜层特征。表 2 是对 131 个样品的整体和局部表面形貌的观察统计结果,其中 68% 的样品整体上观察不到孔隙结构。因此可以认为聚乙烯包膜肥料膜层具有典型特征,即:膜层表面连续平整,整体光滑无孔, 但在局部存在少量孔隙。

综上所述,包膜肥料具有的特征:膜层表面连 续平整,具有喷涂痕迹,局部粗糙,有时能观察到 直径较大的孔,但是在放大倍数很高的情况下,整 体上无细微的孔隙结构。

2.1.3 聚乙烯包膜肥料膜层表面局部孔隙特征 除了上述典型特征,如表2所述,扫描电镜下还能够观察到圆孔、网孔等局部孔隙特征。图4是样品M33 膜壳的表面形貌特征,其释放期约4个月。

由图 4 可见,在较低放大倍数下,膜层整体连续平整,存在凹凸起伏,与图 2 一样。在放大到

1000~5000 倍时,可以发现一些网络状的孔隙结构。将这些网孔放大到 20000 倍,清晰可见直径大约在 100~300 nm 的网孔。值得注意的是,必须特意认真地寻找才能够发现这类孔,并不是任一局部位置放大都存在此类孔隙结构;当然,任一样品,总能够在局部发现此类特征的孔隙。因此认为:控释膜层局部存在孔隙,也是控释肥料膜层结构的特征之一。

为了揭示膜层局部存在的孔隙结构特征,针对 膜层上的特定区域进行放大观察研究,6种包膜肥料 膜层局部典型孔隙结构形貌如图5所示。

图 5 中, M2-a、M3-a 是采用 HitachiS-4800 SEM 放大 10000 倍时获取的二次电子 SE(U) 图像, 如 2.1.2 所述,在整体光滑的膜层表面上,局部地方 存在少量的孔。将白色圆圈标示的特征孔放大到 100000 倍 (图 5, M2-b、M3-b),能够清楚地看到这

TEL	空隙类型 Pore type						<u>کر بد</u>
项目 Item	无孔 No pore	圆孔 Round pore	网孔 Net pore	裂纹 Rhagadia	尿素晶体 Urea crystal	其它 Other	- 忌釵 Total
样品数 Sample No. (n)	89	16	11	5	3	7	131
比例 Ratio (%)	68	12	8	4	2	5	

图 4 聚乙烯包膜肥料膜层局部典型孔隙结构的表面形貌 (样品代码: M33) Fig. 4 Surface morphology of local typical pore structure of polyethylene coated fertilizer film (Sample code: M33)

种孔的外观,直径约为 200~500 nm。大量的观察结 果显示(表 2),约 12% 样品的膜层表面存在类似圆 形孔洞结构。图 M31-a 是采用 JOEL JSM-7401F SEM 放大 5000 倍时获取的二次电子(LEI)图像,与 M2、M3 不同,局部存在疏松网络结构特征,孔径 在 50~800 nm,约 8% 的样品具有类似的结构。除 了上述特征以外,控释性能差的控释膜层还存在裂 纹、尿素晶体等大尺寸的缺陷结构,所观察到的裂 纹、尿素晶体结构的样品数,分别占总样品数的 4% 和 2%。由此可见,控释膜层局部孔隙真实存 在,而且结构形式多样。这些孔隙结构可能是导致 聚乙烯控释膜与普通拉伸工艺制备的聚乙烯薄膜渗 透系数存在差异的原因,需要深入研究这些孔隙结 构参数的量化指标。

2.1.4 聚乙烯包膜肥料膜层断面形貌特征 聚乙烯 包膜肥料膜层断面形貌特征如图 6 所示。图 6 中 M2-c、M3-c为放大 800 倍时的 SEM 照片,根据比 例标尺,膜层厚度约为 60~100 μm,控释膜层断面 整体光滑,少孔;其外表面与断面的轮廓线较为平 直;受尿素晶体凹凸不平的影响,其内表面与断面 的轮廓线曲折。断面的局部 (白色圆圈的范围) 区域 能见到孔洞。将局部存在孔洞的部位放大到 5000 倍 (图 6、M2-d、M3-d),发现这种孔洞并不普遍,也不 能判断此类孔洞是否贯穿膜层。因此,总体而言聚 乙烯包膜肥料膜层断面形貌表现为疏松无孔,与 2.1.2 膜层表面形貌类似。

2.1.5 聚乙烯包膜肥料膜层内表面和外表面的形貌特征 比较放大 1000 倍时图 7 M8-face、M32-face,即可发现膜层内、外表面的平整度存在巨大的差异。内表面(图 7, M8-in、M32-in)呈现为高低起伏不平、犬牙交错的状态,与图 1 大颗粒尿素表面凹凸不平的特征相匹配。从膜层断面(图 7, M27、M31)上看,也能够发现内表面边缘线非常曲折,存在疏松、不规则的各种凸起。由此可见,控释膜层并不是内外一致、厚度均一、规则连续的膜层,尤其在利用膜层厚度进行计算的时候,需要谨慎对待。

2.2 压汞仪测定的膜层孔隙结构特征

扫描电镜观察结果表明,膜层局部存在一些孔隙结构,为了量化孔隙大小及其分布情况,采用压汞仪测定了5个样品膜层孔隙结构参数,并与拉伸工艺制备的聚乙烯薄膜进行比较,研究聚乙烯控释膜层结构与结果(表3)。5个肥料样品控释膜的总渗入体积在0.4686~1.2260 mL/g,平均孔径在25.1~86.8 nm范围内,孔隙率在33.0%~50.6%,这3项指标均显著高于拉伸工艺制备的聚乙烯薄膜,说明采用喷涂工艺制备的膜层,存在较多的孔隙,表现为结构疏松。另外这些控释膜层材料的堆密度在0.4~0.8 g/mL,低于聚乙烯薄膜的堆密度(0.910~0.925 g/mL),这也说明聚乙烯控释膜层为疏松结构。聚乙烯控释膜层的孔径中值为4.5~5.3 nm,作

图 6 聚乙烯包膜肥料膜层断面图 Fig. 6 Sectional images of polyethylene film for coating urea [注(Note): M2、M3—肥料样品代码 Codes of fertilizer samples.]

图 7 聚乙烯包膜肥料内表面和外表面的形貌特征比较 Fig. 7 Morphology of inner surface and outer surface of polyethylene coated fertilizer [注(Note): M8、M32、M27、M31—肥料样品代码 Codes of fertilizer samples.]

为对比的聚乙烯薄膜为 4.7 nm, 二者基本一致, 表明分子链间的细微结构没有显著差异; 控释膜的总孔面积也显著高于聚乙烯薄膜, 这是其所具有的疏松结构所致。

累积孔隙面积和体积分布与孔径的曲线关系见图 8。 控释膜层中孔径大于 10 nm 以上的累积孔面积 (图 8A) 均低于 11 m²/g,仅占控释膜总孔面积平均值的 18%; 也就是说孔径 10 nm 以下的孔占了总孔面积的 82% 以上。控释膜和聚乙烯拉伸膜的累积孔面积 (图 8A) 有相似的结果,说明孔径 10 nm 以下的孔参数由材 料自身性能决定。从孔体积分布 (图 8B)情况来看, 在孔径 1000~50 nm 范围内分布有少量的孔,孔径

Table 3 Pore structure parameters of polyolefin film						
样品代码 Sample code	总渗入体积 Total intrusion volume (mL/g)	总孔面积 Total pore area (m²/g)	孔径中值 Median pore diameter (nm)	平均孔径 (4V/A) Average pore diameter (nm)	堆密度 Bulk density (g/mL)	孔隙率 Porosity (%)
PE	0.1320 d	43.2 b	4.7 a	8.4 f	0.9 a	5.3 b
M4	0.4686 c	74.7 a	5.3 a	25.1 e	0.8 a	36.1 a
M5	0.6339 b	53.5 a	4.8 a	47.4 d	0.5 b	33.0 a
M6	0.7434 b	56.6 a	4.7 a	52.5 c	0.8 a	44.8 a
M7	1.1666 a	58.9 a	4.7 a	79.2 b	0.4 b	42.9 a
M8	1.2260 a	56.5 a	4.5 a	86.8 a	0.6 b	50.6 a

表 3 聚乙烯膜层孔隙结构参数 Table 3 Pore structure parameters of polyolefin film

注(Note): PE 采用拉伸工艺制备的聚乙烯薄膜 PE was polyethylene film made by stretching process; 数据后不同小写字母表示样品间差 异显著 Different small letters after data mean significantly different among fertilizer samples (P<0.05).

Fig. 8 Curve of cumulative pore area and differential intrusion with the pore diameter in logarithm

[注(Note): M4~M8—肥料样品代码 Codes of fertilizer samples; PE 采用拉伸工艺制备的聚乙烯薄膜 PE was polyethylene film made by stretching process.]

小于 50 nm 的孔则大量分布,孔径 50 nm 以上的孔 总孔面积约为 5 m²/g,仅占 8%。以上参数说明,聚 乙烯控释膜层存在 8% 直径约为 1000~50 nm 的较大 孔,82% 的孔孔径小于 10 nm。另外图 8 中显示,控 释膜层在 7 μm 以上均有孔分布,这部分孔与膜层前 处理有关,会影响部分参数,属于测定误差,在此 不深入讨论。压汞仪测定参数表明:控释膜比拉伸 膜膜层更疏松,且存在少量 50 nm 以上较大尺寸孔 隙结构,这部分孔与养分释放速率快慢存在一定关系。

2.3 泡点法测定的膜层最大孔径

根据扫描电镜和压汞仪研究结果,膜层上局部 位置存在着一些较大孔洞。为了准确测定最大孔洞 的大小,本研究采用改进的泡点法^[15],针对聚乙烯控 释膜层的特点,原位测定了膜的最大孔径(表4)。 5种包膜肥料,最大孔径处于480~990 nm的范围 内,比扫描电镜观察的孔径值略小,与压汞仪测定 的孔分布范围类似,这进一步说明聚乙烯薄膜控释 肥料膜层孔隙特征。从表4还可以看出,随包膜肥 料释放期的延长,膜孔直径逐步减小,也就说明包 膜控释肥料养分释放速率与其最大孔径存在内在 联系。

3 讨论

李方敏等^[8]、秦裕波等^[9]研究认为,控释膜均匀 致密,表面光滑连续,但在膜层表面有较多杂质, 有少量的微粒凸起,叠层间有微小的孔隙和较明显 的气泡。这与本研究观察结果"整体连续光滑、局 部有孔隙"基本一致。杨相东等^[45]、徐久凯等^[15]用压 汞仪和泡点法测定了控释膜平均孔径、最大孔径, 平均孔径为 25~95 nm,最大孔为 1 μm 左右。本研 究的压汞仪测定数据也表明控释膜层上存在几个微 米到几个纳米的孔隙结构,平均孔径为 25~88 nm,

Table 4 Nitrogen release rate affected by pore sizes of coated films						
样品代码 Sample code	初溶率 (%) Initial release rate	微溶率 (%) Differential release rate	释放期 (d) Release period	最大孔径* (nm) Max pore size		
M4	0.1	0.7	122	480		
M5	0.9	0.9	88	540		
M6	1.3	1.3	61	820		
M7	2.1	1.8	45	910		
M8	2.8	2.6	31	990		

表 4 不同膜孔性包膜肥料氮素的释放率

注(Note): *表示 100 颗包膜肥料最大孔径平均值 Average maximum pore diameter of 100 coated fertilizer particles.

最大孔径约为几百纳米。另外,研究证实控释膜层 外表面平整、内表面不规则平整,厚度基本在 50~80 µm 范围内。依据这些数据,聚乙烯控释膜层 结构特征可归纳概括为: 膜层均匀致密、局部有孔 隙, 膜壳直径 3 mm, 膜层厚度约为 50 µm, 最大孔 径为1 µm, 平均孔径为 50 nm。

如果把控释膜层上存在的孔隙看作圆形的通 道,根据细长圆管中的粘性流动符合哈根-泊萧叶 (Hagen-Poiseuille) 流体公式,流体量与管道半径的平 方及渗透压力成正比,孔径相差10倍,流量相差 100 倍。因此养分会优先通过阻力小的大孔释放,如 果大孔直径为1 µm, 那么小于 100 nm 孔释放的量可 以忽略不计。徐久凯等的研究也证实控释膜层平均 孔径、最大孔径与养分释放速率存在一定的相关性。

图 9-A 是在 25℃ 恒温静水浸泡条件下释放 1 周 后包膜尿素溶解后形成膜壳"空腔"的光学显微照 片,光线能够透过尿素溶解后形成的腔体,膜层依 然完好;光线不能透过未溶解尿素固体,形成黑色 区域。图 9-B 是普通照片, 白色部分是未溶解的尿 素,释放初期可观察到包膜尿素溶解后形成的透明 区域。包膜尿素总是从一个局部开始溶解,最早发 生尿素溶解的位置,可以推测是最大孔存在的位

置,而且孔流通道一旦形成,就基本决定了单颗粒 尿素的释放速率。

图 9-C 是释放一个月后的普通照片。可以看到 包膜肥料的膜层内存在液、固两相,即溶解的尿素 饱和溶液与未溶解的固体尿素。结合扫描电镜、压 汞仪和泡点法测定结果,可以构建聚乙烯控释膜层 的结构模式图 (图 10)。

聚乙烯包膜控释肥料膜层孔隙结构模型可以描 述为:聚乙烯膜层是一个直径3mm、厚度约为50 μm 的密闭球形壳体, 整体上为连续均匀的致密膜, 但局部位置存在大小不一的孔隙,平均孔径为50 nm,最大孔约为1µm,最大孔是水分和养分进出膜 层的主要通道。在最大孔位置, 膜内尿素最先溶 解,形成的尿素饱和溶液在渗透压的作用下向膜外 扩散,并维持着溶解-扩散平衡。

结论 4

1) 聚乙烯控释膜整体上呈现为均匀疏松、连续 光滑,但膜层局部存在少量的孔隙。扫描电镜能够 观测到孔径约为 200~900 nm 的孔隙:此外, 控释 性能差的控释膜层还有裂纹、尿素晶体等大的缺陷 结构。聚乙烯控释膜层厚度约 40~100 µm, 断面整

图 9 聚乙烯膜层最大孔优先释放的照片 Fig. 9 Photo of maximum hole priority release of polyethylene controlled-release fertilizer

图 10 聚乙烯包膜肥料膜层典型孔隙结构模式图

Fig. 10 Schematic diagram of typical pore structure in polyethylene coating film of controlled-release fertilizer

体疏松少孔。

2) 采用喷涂工艺制备的控释膜层总孔体积在 0.4686~1.2260 mL/g,平均孔径在 25.1~86.8 nm 范 围内,孔隙率在 33.0%~50.6%,膜层存在较多的孔 隙,结构疏松。孔径 10 nm 以下孔占了总孔面积的 82% 以上,孔径 50 nm 以上孔仅占总孔面积的 8%, 孔径 1000~50 nm 的范围内有少量的孔分布。

3)释放期在 1~6个月的包膜控释肥料,其最大 孔径在 990~480 nm 范围内,比扫描电镜观察的孔 径值略小,与压汞仪测定的孔分布范围类似。

4) 聚乙烯控释膜层可以看作是膜层均匀致密且 局部有孔隙,膜壳直径 3 mm,膜层厚度约为 50 μm, 最大孔径为 1 μm,平均孔径为 50 nm 的密闭球形壳 体。最大孔是水分和养分进出膜层的主要通道。

参考文献:

- [1] Sun Y M, Huang W F, Chang C C. Spray-coated and solution-cast ethylcellulosepseudolatex membranes[J]. Journal of Membrane Science, 1999, 157(2): 159–170.
- [2] Ma D C, Mchugh A J. The interplay of phase inversion and membrane formation in the drug release characteristics of a membrane-based delivery system[J]. Journal of Membrane Science, 2007, 298(1-2): 156-168.
- [3] Siepmann F, Siepmann J, Walther M, et al. Polymer blends for controlled release coatings[J]. Journal of Controlled Release, 2008, 125(1): 1–15.
- [4] 杨相东,曹一平,江荣风,等.雾化状态对制备控释肥料膜结构和性能的影响[J].化工学报,2008,59(3):778-784.
 Yang X D, Cao Y P, Jiang R F, *et al.* Effect of atomization on membrane structure and characteristics during manufacture of polymer-coated controlled-release fertilizer[J]. Journal of Chemical Industry and Engineering, 2008, 59(3): 778-784.
- [5] Yang X D, Jiang R F, Lin Y Z, *et al.* Nitrogen release characteristics of polyethylene-coated controlled-release fertilizers and their

dependence on membrane pore structure[J]. Particuology, 2018, 36: 158–164.

- [6] Trenkel M E. Slow and controlled-release and stabilized fertilizers[M]. International Fertilizer Industry Association (IFA), 2010, Paris, France.
- [7] 毛小云, 冯新, 王德汉, 等. 固-液反应包膜尿素膜的微结构与红外 光谱特征及氮素释放特性研究[J]. 中国农业科学, 2004, 37(5): 704-710.

Mao X Y, Feng X, Wang D H, *et al.* Study on membrane microstructures and characteristics of infrared spectra and nitrogen release of solid-liquid reaction coated urea[J]. Scientia Agricultura Sinica, 2004, 37(5): 704–710.

- [8] 李方敏, 樊小林, 张桥, 等. 控释肥料的制造工艺及包膜的结构特征
 [J]. 磷肥与复肥, 2005, 20(5): 47–48.
 Li F M, Fan X L, Zhang Q, *et al.* Manufacture technology of controlled release fertilizers (CRFs) and its structural characteristics of coating[J]. Phosphate & Compound Fertilizer, 2005, 20(5): 47–48.
- [9] 秦裕波, 唐树梅, 谢佳贵, 等. 新型缓控释肥料的研制及其缓控释性 能研究[J]. 土壤通报, 2008, 39(4): 855–857.
 Qin Y B, Tang S M, Xie J G, *et al.* Researches on the preparations of new type slow-release and controlled release fertilizers and their slow-release effectiveness[J]. Chinese Journal of Soil Science, 2008, 39(4): 855–857.
- [10] Wei Y, Li J, Li Y T, *et al.* Research on permeability coefficient of a polyethylene controlled release film coating for urea and relevant nutrient release pathways[J]. Polymer Testing, 2017, 59: 90–98.
- [11] Calvo J I, Hernández A, Prádanos P, et al. Pore size distributions in microporous membranes. II. Bulk characterization of track-etched filters by air porometry and mercury porosimetry[J]. Journal of Colloid and Interface Science, 1995, 176(2): 467–478.
- [12] Carlos A L. New perspectives in mercury porosimetry[J]. Advances in Colloid and Interface Science, 1998, 76-77: 341–372.
- [13] Mohl S, Winter G. Continuous release of rh-interferon a-2a from triglyceride matrices[J]. Journal of Controlled Release, 2004, 97(1): 67–78.
- [14] Mulder J. Basic principles of membrane technology (second edition)[M]. Amsterdam: Kluwer Academic Publishers, 1996.

25 卷

- [15] 徐久凯, 李絮花, 杨相东, 等. 聚烯烃包膜控释肥膜层孔径测定方法研究[J]. 植物营养与肥料学报, 2016, 22(3): 794-801.
 Xu J K, Li X H, Yang X D, *et al.* Study on measuring methods for pore size of polyolefin film coated controlled-release fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 794-801.
- [16] Hernandez A, Calvo J I, Pradanos P, et al. Surface structure of microporous membranes by computerized SEM image analysis applied to anopore filters[J]. Journal of Membrane Science, 1997, 137(1-2): 89–97.
- [17] 曹一平,杨相东,江荣风,等.一种聚合物包膜控释肥料及其生产方

法与专用包膜材料[P]. 发明专利, ZL200710099144.7, 2009-11-11. Cao Y P, Yang X D, Jiang R F, *et al.* Production method of polymer coated controlled release fertilizer and special coating materials[P]. Chinese Patent, Patent No.: ZL200710099144.7, 2009-11-11.

[18] 杨相东,曹一平,江荣风,等. 几种包膜控释肥氮素释放特性的评价
[J]. 植物营养与肥料学报, 2005, 11(4): 501–507.
Yang X D, Cao Y P, Jiang R F, *et al.* Evaluation of nutrients release feature of coated controlled-release fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(4): 501–507.