Molecular Plant-Microbe Interactions "First Look" paper • http://dx.doi.org/10.1094/MPMI-11-17-0273-R • posted 01/08/2018 This paper has been peer reviewed and accepted for publication but has not yet been copyedited or proofread. The final published version may differ.

1	Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens
2	SQR9 to induce plant systemic resistance and their interactions with plant
3	signaling pathways
4	Running title: Exploring elicitors of plant systemic resistance
5	Gengwei Wu ^{a1} , Yunpeng Liu ^{a2} , Yu Xu ¹ , Guishan Zhang ² , Qirong Shen ¹ , Ruifu
6	Zhang ^{12*}
7	¹ Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National
8	Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative
9	Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural
10	University, Nanjing, 210095, P.R. China;
11	² Key Laboratory of Microbial Resources Collection and Preservation, Ministry of
12	Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese
13	Academy of Agricultural Sciences, Beijing 100081, P.R. China
14	^a These authors contributed equally to the article.
15	*Corresponding author
16	Ruifu Zhang, National Engineering Research Center for Organic-based Fertilizers,
17	Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization,
18	Nanjing Agricultural University, Nanjing, 210095, P.R. China. E-mail address:
19	rfzhang@njau.edu.cn. Tel: 86-25-84396477, Fax: 86-25-84396260, ORCID ID:
20	0000-0002-3334-4286.
• •	

1

22	Abstract: Beneficial rhizobacteria have been reported to produce various elicitors
23	that induce plant systemic resistance, but there is little knowledge concerning the
24	relative contribution of multiple elicitors from a single beneficial rhizobacterium on
25	the induced systemic resistance in plants and the interactions of these elicitors with
26	plant signaling pathways. In this study, nine mutants of the plant growth-promoting
27	rhizobacterium Bacillus amyloliquefaciens SQR9 deficient in producing the
28	extracellular compounds, including fengycin, bacillomycin D, surfactin, bacillaene,
29	macrolactin, difficidin, bacilysin, 2,3-butandiol, and exopolysaccharides, were tested
30	for the induction of systemic resistance against Pseudomonas syringae pv. Tomato
31	DC3000 and Botrytis cinerea and the transcription of the salicylic acid (SA), jasmonic
32	acid (JA) and ethylene (ET) signaling pathways in Arabidopsis. Deficiency in
33	producing any of these compounds in SQR9 significantly weakened the induced plant
34	resistance against these phytopathogens. These SQR9-produced elicitors induced
35	different plant defense genes. For instance, the enhancement of 1,3-glucanase (PR2)
36	by SQR9 was impaired by a deficiency of macrolactin, but not surfactin. SQR9
37	mutants deficient in the lipopeptide and polyketide antibiotics remained only 20%
38	functional for the induction of resistance-related gene transcription. Overall, these
39	elicitors of SQR9 could act synergistically to induce plant systemic resistance against
40	different phytopathogens through different signaling pathway genes, and the bacterial
41	antibiotics are major contributors to the induction.

42 Keywords: Induced systemic resistance (ISR), elicitor, plant growth-promoting

43 rhizobacteria, phytopathogen, Arabidopsis, antibiotics

44

45 Introduction

Agricultural production is encountering great challenges from plant pathogens, 46 which have caused worldwide significant yield decreases. Application of plant 47 48 growth-promoting rhizobacteria (PGPRs) has been known to be an efficient way to 49 suppress plant pathogens. One of the mechanisms of PGPRs in exerting their 50 bio-control function is the induced systemic resistance (ISR) of plants against a broad 51 spectrum of phytopathogens in aboveground plant tissues (Ryu et al. 2003; Glazebrook 2005; Hamid et al. 2005; Yi et al. 2013), which has been described as the 52 53 "activation of the host plant's physical or chemical defenses by an inducing agent" (Kloepper 1993). Root colonized PGPRs induce systemic resistance by producing a 54 range of secondary metabolites, which are called "elicitors". After the elicitors are 55 56 sensed, the jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) signaling pathways are activated to trigger plant resistance. Characterization of bacterial 57 elicitors is meaningful for understanding the priming of plant defenses against 58 59 phytopathogens and consequently guiding agricultural production.

50 So far, many elicitors produced by PGPRs have been identified and 51 characterized. *Pseudomonas* elicitors, such as 2,4-diacetylphloroglucinol and 52 N-acylated-l-homoserine lactones (AHLs), have been well characterized at the 53 molecular level (Schuhegger et al. 2006; Iavicoli et al. 2003). Volatile organic

Bacillus

compounds (VOCs) produced by *Bacillus* subtilis GB03 and 65 amyloliquefaciens IN937a have been reported to trigger the activation of ET-/JA-responsive gene PDF1.2 (Rvu et al. 2004; Sharifi and Rvu 2016). Similarly, 66 67 another volatile compound, dimethyl disulfide (DMDS), produced by Bacillus cereus 68 C1L, plays an important role in inducing resistance to plant fungal diseases in tobacco 69 and corn plants (Huang et al. 2012). Fengycin and surfactin, produced by B. subtilis 70 strains, exhibit a significant ISR-mediated protective effect on bean plants and could activate the lipoxygenase pathway in tomato (Ongena et al. 2007). PeBA1 protein 71 produced by B. amyloliquefaciens NC6 could induce systemic resistance against a 72 73 broad spectrum of pathogens, including tobacco mosaic virus (TMV) and the fungal 74 pathogen B. cinerea, since SA-responsive PR1a, PR1b, PR5, and PAL, as well as JA-responsive *PDF1.2* and *COI1*, were up-regulated upon treatment with PeBA1 75 (Wang et al. 2016). These studies indicated that SA, JA and ET signaling pathways 76 77 are involved in corresponding elicitor processes.

However, most of the previous studies have focused on a single or few elicitors 78 from rhizobacteria (Pieterse et al. 2014; Hélène et al. 2015). One bacterium is usually 79 80 equipped with multiple potential elicitors to activate plant systemic resistance. For example, a plant beneficial rhizobacterium *Bacillus amvloliquefaciens* SOR9 81 82 produced a range of secondary metabolites, such as the surfactin, fengycin, 83 bacillomycin, bacillaene, macrolactin, difficidin, bacilysin, indole-3-acetic acid (IAA) and 2,3-butanediol (Shao et al. 2015; Li et al. 2014). Several of these compounds 84

85	have been reported to be elicitors of plant resistance, such as surfactin, fengycin and
86	2,3-butanediol (Ongena et al. 2007; Ryu et al. 2004). A comprehensive evaluation of
87	these potential elicitors from one plant beneficial rhizobacterium to coordinate and
88	contribute to the overall ISR response of the plant host is generally lacking. Moreover,
89	SA, JA and ET signaling pathways are involved in plant ISR responses, and the
90	interactions of these multiple elicitors and plant signaling pathways are in need of
91	systemic exploration from a holistic view. Therefore, the objective of this study is to 1)
92	systematically characterize and evaluate the relative contributions of multiple elicitors
93	from a single rhizobacterium to the overall ISR and 2) explore their interactions with
94	the plant signaling pathways.

To achieve these objectives, a well-studied plant beneficial rhizobacterium B. 95 96 amyloliquefaciens SQR9 and the model plant Arabidopsis thaliana (L.) Columbia (Col-0) were used for this study. Strain SQR9 has been demonstrated for its efficient 97 plant growth-promoting and bio-control activities (Li et al. 2014; Liu et al. 2016; 98 Shao et al. 2015; Xu et al. 2013); SQR9 exerted its plant beneficial effects through 99 100 sensing the root-secreted signals (Liu et al. 2014, 2017) and producing secondary 101 metabolites to affect the plant host (Chen et al. 2016, 2017). In this study, we 102 demonstrated that SQR9 produced secondary metabolites that acted as elicitors in 103 inducing the systemic resistance of Arabidopsis against P. syringae pv. Tomato 104 DC3000 (Pst DC3000) and B. cinerea, and the lipopeptides, polyketides and dipeptide 105 antibiotics contributed the major roles for the ISR. Elicitors have specific effect on the 106 induction of plant defense pathways and against different phytopathogens.

107 RESULTS

108 Plant beneficial rhizobacterium B. amyloliquefaciens SQR9 induced plant systemic

109 resistance

110 Infection of the phytopathogens P. svringae py. Tomato DC3000 (Pst DC3000) 111 and B. cinerea were used as indicators to test whether SQR9 induces resistance in 112 Arabidopsis. The subsequent quantification of pathogens was based on plate counting and disease severity for Pst DC3000 and B. cinerea, respectively. The results showed 113 that inoculation with SQR9 led to a significant decrease (190-fold at 4 days and 114 40-fold at 6 days post inoculation with *Pst* DC3000) of *Pst* DC3000 infection (Fig. 115 116 1A, Table S1). At 4 days and 6 days post inoculation with Botrytis cinerea (B. *cinerea*), the disease incidence decreased by 33.3% and 23.1%, respectively, and the 117 area under disease progress curve (AUDPC) decreased by 25.8% and 28.4%, 118 respectively, in plants treated with SQR9 compared with the control (Fig. 1B and 1C, 119 120 Table S2).

121 SQR9 activated plant SA, JA and ET signaling pathways

To investigate whether the SA, JA or ET signaling pathways are involved in the ISR response activated by SQR9-produced elicitors, the contents of salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) in plants were measured. The plants without inoculation with SQR9 served as control (CK) plants. We observed that root contents of SA, JA and ET increased the most (1.4-fold, 2-fold and 1.4-fold of those

127	in CK, respectively) after inoculation with SQR9 for 1 day, after which the contents
128	of SA and JA have quickly decreased, but the increase of ET content lasted longer;
129	ET content in SQR9 inoculated root was still significantly higher than that in the CK
130	root after 4 days (Fig. 2). However, the shoots showed a slower response than the
131	roots did. The content of SA and JA in shoots gradually increased until reaching 1.3
132	fold higher than the CK at 4 days post-inoculation, while ET increased to 1.2-fold at 2
133	days post-inoculation (Fig. 2, Table S3). These results indicate that the accumulation
134	of hormones in local tissues is faster than in those distal.
135	Furthermore, the transcription levels of genes involved in the SA, JA and ET
136	signaling in leaves were evaluated. Generally, the tested genes involved in all the
137	three signaling pathways were activated by SQR9 (Fig. 3, Table S4). For SA signaling,
138	the NPR1 protein, which is a receptor of SA and a transcriptional co-regulator,
139	increased to the highest value (8.4-fold) at 6 h post-inoculation (Fig. 3A). The
140	transcription of the SA-inducible marker defense protein, PR1, increased and reached
141	the highest value (3.7-fold) at nearly the same time as NPR1 (Fig. 3A). PR2 and PR5
142	responded to SQR9 inoculation faster but at a lower level than PR1. For JA signaling,
143	the transcription of AOS, the key JA biosynthesis enzyme, increased to its highest
144	level (5.7-fold) 1-h post inoculation (Fig. 3B), while the transcription of COI1 and the
145	downstream transcription factor MYC2 reached their highest levels (7-fold and
146	4.7-fold) at 3 h and 12 h post inoculation, respectively (Fig. 3B). ERF1, a downstream
147	regulator of the ET signaling pathway, was up-regulated to its highest level of 3.8-fold

148	3-6 h post inoculation; as a consequence, HEL (pathogenies-related protein 4), a
149	defense gene under the regulation of the ET pathway, reached its highest level (4-fold)
150	at the same time (Fig. 3C). Moreover, transcription of CHIB and PDF1.2 reached the
151	highest levels (11.7-fold and 5.5-fold) at 12 h post inoculation (Fig. 3D). These results
152	indicate that all three signaling pathways in Arabidopsis were activated by inoculation
153	with SQR9.

154 SQR9 produced multiple elicitors to induce plant systemic resistance

To identify the SQR9-produced compounds that elicit a systemic resistance in *Arabidopsis*, SQR9 mutants deficient in the production of each potential elicitor (antibiotics, growth-promoting compounds and exopolysaccharides) were tested for their function in inducing systemic resistance. The descriptions of these SQR9 mutants are shown in Table 1.

160 In brief, the results showed that mutations in the production of lipopeptide and polyketide antibiotics (Δsfp in the sfp gene, which is required for phosphopantetheine 161 translocation and thus necessary for synthesis of all these antibiotics) caused a sharp 162 decrease in the ability of SQR9 to induce plant resistance against Pst DC3000 and B. 163 164 *cinerea* (Fig. 4). For *Pst* DC3000, the mutant Δsfp showed only a quarter of the ability 165 of the wild type strain to trigger the plant resistance against *Pst* DC3000 (Fig. 4A). 166 Even more, induction of plant resistance against B. cinerea was completely blocked when sfp was knocked out in SQR9 (Fig. 4B). For single antibiotics, mutants deficient 167 168 in surfactin, bacillomycin D, fengycin or macrolactin production showed half the

169	ability of SQR9 to induce plant resistance against Pst DC3000, while other antibiotics
170	as bacillaene, difficidin and bacilysin did not show remarkable contributions (Fig. 4A).
171	For inducing resistance against B. cinerea, mutations of each antibiotic production
172	showed significant reductions compared to the wild type strain at 4 days
173	post-infection (Fig. 4B); among them, bacillomycin D, surfactin, difficidin, bacillaene
174	and bacilysin showed significantly higher contributions to plant resistance against B .
175	cinerea than other antibiotics (Fig. 4B). These results indicate that all these antibiotics
176	are elicitors of plant systemic resistance with specificity against different pathogens.
177	In addition to the antibiotics, SQR9 produced indole-3-acetic acid (IAA)
178	contributed to plant ISR since an IAA deficient mutant ($\Delta ysnE$) exhibits a
179	significantly reduced ability to induce plant resistance against B. cinerea, but no
180	significant effect on plant resistance against Pst DC3000 was observed (Fig. 4B). The
181	SQR9 mutants $\Delta alsD$ and $\Delta epsD$, deficient for 2,3-butanediol and exopolysaccharide
182	production, respectively, showed significantly reduced abilities to induce plant
183	resistance against both Pst DC3000 and B. cinerea (Fig. 4B).
184	Correspondence analysis of SQR9 elicitors and plant defense signaling pathways
185	To evaluate the contribution of SQR9-produced elicitors to these plant signaling
186	pathways, the transcription of these signaling genes upon inoculation with SQR9 wild

187 type and elicitor mutants was analyzed using a qRT-PCR approach at 6 h 188 post-inoculation (Table S5). The contribution of each elicitor to the transcription of 189 plant defense genes was calculated by dividing the reduced gene transcription of a

190	plant inoculated with the elicitor mutant to that of a plant inoculated with wild-type
191	SQR9 (Fig. 5). The SQR9 mutant Δsfp , deficient of all antibiotic production, showed
192	a large decrease of 70% to 90% in the activation of transcription of the measured
193	defense genes (Fig. 5). The lipopeptide antibiotic fengycin was effective in inducing
194	both the SA- and JA-signaling pathways, especially in inducing the transcription of
195	PR2 and COI1; a deficiency of fengycin caused more than a 70% decrease of
196	upregulation of PR2 and COI1 by SQR9; bacillomycin D and bacillaene showed a
197	broad range but weak contribution (no more than 50%) to all tested defense genes;
198	surfactin showed a 60%-70% contribution to PR5, NPR1, AOS1, MYC2, HEL/PR4,
199	CHIB, and PDF1.2. For polyketide antibiotics, macrolactin showed a 60%-70%
200	contribution to PR2, PR5, HEL/PR4 and PDF1.2 and a 50% contribution to CHIB,
201	ERF1 and AOS1; difficidin showed an 80% contribution to ERF1. The dipeptide
202	bacilycin showed a great contribution to the ET-signaling pathway; a deficiency of
203	bacilycin production caused more than an 80% reduction of the enhancement of
204	HEL/PR4 and ERF1 by SQR9; moreover, bacilycin showed more than a 50%
205	contribution to all the tested genes except for CHIB and COI1. For the non-antibiotic
206	elicitors, the volatile compound 2,3-butanediol showed an 80% contribution to PR2
207	and HEL/PR4 and more than a 60% contribution to PDF1.2; reduced phytohormone
208	IAA production ($\Delta ysnE$) caused an 80% decrease of the induction of PR5 and 70% of
209	AOS1; the exopolysaccharide showed more than a 70% contribution to COI1 and
210	PR5 and an 80% contribution to PR2.

211 **Discussion**

212 In the present study, bacterial mutants were used to investigate which bacterial 213 compound serves as the elicitor of plant ISR and which plant signaling pathway is 214 activated by these elicitors. We elaborated the network of these elicitors in B. 215 amyloliquefaciens SOR9 in inducing the systemic resistance of Arabidopsis. A 216 conclusion is that the antibiotics, including lipopeptides (bacillomycin D, fengycin, 217 surfactin), polyketides (bacillaene, macrolactin, difficidin) and the dipeptide bacilysin, 218 play the most important role in triggering plant systemic resistance. 219 Bacillus spp.-produced surfactin, fengycin, cold shock protein, 2,3-butanediol, 220 acetoin, 2-aminobenzoic acid, and dimethyl disulfide have been identified as elicitors 221 of the plant defense response (Yang et al. 2011; Huang et al. 2012; Ongena et al. 2007; 222 Yi et al. 2016). However, the effect of the lipopeptide bacillomycin D, the polyketide 223 macrolactin (mln), difficidin, bacillaene, and the dipepetide bacilycin on plant 224 systemic resistance has not been reported. We showed that macrolactin is a strong 225 elicitor of plant resistance against Pst DC3000 (Fig. 4A). The dipeptide antibiotic 226 bacilysin, which has shown antibacterial activity against Xanthomonas oryzae and

228 *Arabidopsis* resistance against *B. cinerea* through the ET and SA signaling pathways.

Erwinia amylovora (Wu et al. 2015), showed active participation in regulating

Furthermore, the overall correspondence of these elicitors and the transduction pathways in plants, which has not been studied previously, was comprehensively investigated in this study. Interestingly, we found that induction of the defense genes

. Look" paper • http://dx.doi.org/10.1094/MPMI-11-17-0273-R • posted 01/08/2018	blication but has not yet been copyedited or proofread. The final published version may differ.
MPMI-1	l or proof
3/10.1094/	copyedited
dx.doi.org	yet been c
sr • http://	t has not
ook" pape	ication bu
s "First L	l for publ
nteractions	l accepted
Aicrobe In	iewed and
ar Plant-N	n peer rev
Molecul	r has beei
	This pape

232	by each elicitor is relatively specific. For example, bacilysin showed more than an 80%
233	contribution to the ET signaling pathway but did not participate in the activation of
234	CHIB (Fig. 5). Surfactin, macrolactin and bacillaene contributed to induction of
235	CHIB. Some of the compounds showed similar effects as previously reported:
236	surfactin has been reported to be important for bacteria to activate the SA signaling
237	pathway and induce chitinase (CHIB) but showed little effect on 1,3-glucanase (PR2)
238	(Farace et al. 2015). Accordingly, we found that deficiency of surfactin production
239	reduced the enhancement of CHIB; however, the transcription enhancement by SQR9
240	was not completely blocked. One reason is there are two other elicitors (macrolactin
241	and bacillaene) produced by this strain involved in the activation of the transcription
242	of CHIB (Fig. 5). SQR9 mutant deficient in 2,3-butanediol, a kind of volatile organic
243	compound, activated the transcription of PR2 at much lower levels than the wild type
244	strain did, which is consistent with previous reports (Yi et al. 2016).
245	Exopolysaccharides produced by Burkholderia gladioli IN26 enhanced the expression
246	of PR1a in cucumber (Kyungseok et al., 2008); however, in this study, the
247	exopolysaccharides contributed greatly to the enhanced expression of PR2 and PR5,
248	but not that of PR1. Exopolysaccharides synthesized by different bacteria vary greatly
249	in their composition and hence in their chemical and physical properties (Flemming
250	and Wingender 2010), which may affect their abilities to induce defense genes.
251	SQR9-produced macrolactin and fengycin induced stronger plant resistance

against Pst DC3000 but not against B. cinerea, whereas bacilycin induced a stronger

253	resistance against B. cinerea but not against Pst DC3000 (Fig. 4). It is known that
254	Botrytis cinerea is a kind of necrotrophic pathogen, and plant resistance against these
255	pathogens generally depends on the JA/ET signaling pathways (Pieterse et al. 2009),
256	while Pst DC3000 is a hemi-biotrophic pathogen, the plant resistance against it
257	generally depends on the SA signaling pathway, although with exceptions (Pieterse et
258	al. 2009). When comparing the effect of macrolactin, fengycin and bacilycin on plant
259	resistance-related genes, bacilycin showed the strongest effect on the JA/ET signaling
260	pathway genes compared to any other elicitors (Fig. 5), especially for the transcription
261	factor ERF1 and HEL/PR4 (Fig. 5) (Fernández-Calvo et al. 2011; Mao et al. 2016).
262	Macrolactin showed a stronger effect than bacilycin on the induction of CHIB, which
263	is generally recognized to contribute to the plant defense through pathogen cell wall
264	degradation (Pieterse et al. 2009). However, macrolactin was less effective than
265	bacilycin in inducing plant resistance against B. cinerea (Fig. 4B). It indicated that
266	up-regulation of CHIB is not necessary for induced systemic resistance against B.
267	cinerea. However, it is still not clear whether CHIB is effective against different
268	phytopathogens.

Interestingly, it was observed that phytohormone accumulation in distal plant tissue was slower than in local tissue after inoculation with SQR9 (Fig. 2). The transition of signal from local to distal tissue is achieved by a range of mobile chemicals. Methyl salicylate (MeSA) and ethylene could serve as media in the long distance signaling-transduction in plant (Dempsey and Klessig 2012; Shah and Zeier 274 2013). This indicated that the time-delay of phytohormones enhancement in distal275 tissue (shoot) could be caused by the signal translocation from root to shoot.

276 It is known that some of the secondary metabolites exert multiple functions in 277 bacteria besides antagonistic activity and inducing plant resistance. For instance, 278 surfactin has been reported to enhance the biofilm formation of *Bacillus subtilis* (Aleti 279 et al. 2016). Experiments with pure surfactin showed consistent results with the experiment using an *srf* mutant (Fig. S1), which indicated that the strategy of this 280 281 study to use a potential elicitor mutant to evaluate their contribution to plant ISR is 282 reliable, but these results cannot be turned into the true effect of the chemically 283 purified elicitor compound. Moreover, the correlation analysis between hormone 284 accumulation and gene expression after inoculation with SQR9 and mutants 285 confirmed the correspondence of bacterial genes and plant defense genes and the 286 cross-talk between hormones and signaling pathways (Fig. S2).

287 In conclusion, plant beneficial rhizobacterium SQR9 produced multiple elicitors 288 to induce systemic resistance in Arabidopsis against Pst DC3000 and B. cinerea, and 289 these lipopeptides, polyketides. dipepetide antibiotics. 2.3-butandiol and exopolysaccharides played a major role to the ISR. Elicitors have specific effects on 290 291 the induction of plant defense pathways and against different phytopathogens. Further 292 investigation of the complex crosstalk between the multiple elicitors and the signaling 293 pathways are needed to provide further insights into the interactions between 294 beneficial rhizobacteria and plants.

295 Materials and methods

296 Growth conditions of plants and microbes

297 The Arabidopsis thaliana (L.) Columbia (Col-0) seeds were surface sterilized 298 with 75% (v/v) ethanol and then with 2% (v/v) NaClO, after which they were placed in petri dishes containing 1/2 Murashige and Skoog (MS) medium with 2% (w/v) 299 300 sucrose and 0.8% (w/v) agar. After vernalizing for 2 days at 4°C in darkness, plants were grown under 16 h: 8 h light-dark cycles at 22°C. Ten days later, seedlings were 301 transferred to new petri dishes containing 1/2 MS medium with 2% (w/v) sucrose and 302 303 1.5% (w/v) agar for inoculation with SQR9 or its mutants. For assessing the resistance 304 of Arabidopsis to Pst DC3000 and B. cinerea, ten-day-old seedlings were transferred 305 to a growth chamber with a vermiculite-peat soil mixture and allowed to grow for 5 306 weeks.

307 Bacillus amyloliquefaciens SQR9 (China General Microbiology Culture 308 Collection Center (CGMCC) accession No. 5808), including wild type and mutants 309 (Table 1), was grown in Luria-Bertani (LB) liquid medium at 37°C and 170 rpm to an 310 OD_{600} of 1.0. Subsequently, bacterial cells were pelleted by centrifugation and suspended to 5×10⁸ CFU/mL for use. Pst DC3000 was grown in KB liquid medium 311 312 containing 50 mg/L rifampicin at 28°C and 170 rpm for 18 h. Subsequently, bacterial cells were pelleted by centrifugation and suspended in 10 mM MgCl₂ to 10^6 CFU/mL. 313 Botrytis cinerea was grown on petri dishes filled with PDA medium at 28°C for 10 314 315 days. Spores were collected by washing the colony with sterile water. The 316 concentration was evaluated under a microscope using a counter plate.

317 *Construction of SQR9 mutants*

318	To disrupt 2,3-butanediol synthesis in SQR9, the <i>alsD</i> gene was completely deleted
319	by double crossover (Yan et al., 2008). The erythromycin-resistant cassette was
320	obtained from the plasmid pAX01. Two partial sequence fragments of the <i>alsD</i> gene
321	were amplified from SQR9 DNA. Then, the recombinant fragments were fused and
322	transformed into the SQR9 strain to generate the $\Delta alsD$ mutation. The transformants
323	were selected on LB agar plates containing erythromycin. After then, sequencing of
324	the transformants were performed to confirm that the gene was completely knocked
325	out. Mutant strains Δbae , Δmln , $\Delta dfn2$, $\Delta bac3$, $\Delta epsD$ and $\Delta alsD$ were constructed in
326	the same manner using chloramphenicol-resistance as the screening marker.
327	For all these mutants of polypeptides and polyketides, high performance liquid
328	Chromatography (HPLC) detection was performed to confirm that the syntheses of
329	the antibiotics were completely blocked (Xu et al., 2013; Li et al., 2014).
330	Measurement of salicylic acid, jasmonic acid, ethylene contents in plant
331	Ten-day-old seedlings of wild-type Arabidopsis were planted on new petri dishes
332	containing 1/2 MS medium with 2% (w/v) sucrose and 1.5% (w/v) agar. A 5- μL
333	SQR9 suspension (OD ₆₀₀ =1.0) was separately inoculated onto the petri dishes. At 1, 2,
334	4 and 6 days post-inoculation, plant tissues (shoots and roots) were collected and
335	ground in 1.5 mL of sodium phosphate buffer (pH 7.0), and then centrifuged at
336	12,000 rpm for 10 min, after which the supernatants were collected for the detection

of salicylic acid, jasmonic acid, and ethylene. Twelve biological replicates wereincluded per treatment.

Measurements were performed using an enzyme linked immunosorbent assay (ELISA) (Lengton Bioscience Co., Ltd, Shanghai, China). Fifty microliters of supernatant and 50 µL of HRP-conjugate reagent were added to each well of the ELISA kit plate. The wells were incubated at 37°C for 60 min and then washed five times. Afterward, color reactions were performed for 15 min at 37°C in darkness. Absorbance at 450 nm was then measured, and the concentration was calculated based on the standard curve.

346 Extraction of RNA from plant tissue

347 Ten-day-old seedlings were transferred to new petri dishes containing 1/2 MS 348 medium for two days. Afterward, 5 μ L of suspension of SQR9 or its mutants was 349 inoculated onto the 1/2 MS medium. After 6 h, RNA was extracted from the shoots of 350 Arabidopsis in each treatment. The plant tissue was flash-frozen in liquid nitrogen and then ground. The extraction of RNA was performed using the Qiagen RNeasy Plant 351 352 Mini Kit (Qiagen, Valencia, CA). The extracted RNA was evaluated on a 1% agarose 353 gel, and the concentration and quality (A_{260}/A_{280}) were determined by a NanoDrop 354 ND-2000 spectrophotometer (NanoDrop, Wilmington, DE).

355 *Quantification of the transcription of defense-related genes*

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed using a Prime Script RT Reagent Kit (Takara Biotechnology Co., Ltd,

358	Dalian, China) with an ABI7500 Cycler (Applied Biosystems, Foster City, CA). Their
359	action solution was prepared with SYBR Premix $EXTaq^{TM}$ (Takara). The reaction
360	system (20 µL) included 10 µL of SYBR [®] Premix Ex Taq TM (2×), 0.4 µL of PCR
361	forward primer (10 μM), 0.4 μL of PCR reverse primer (10 μM), 0.4 μL of ROX
362	reference dye (50×), 2 μL of DNA sample, and 6.8 μL of ddH2O. Thermal conditions
363	were as follows: 30 s at 95°C for initial denaturation and 40 cycles of 5 s at 95°C,
364	followed by 34 s at 60°C. The transcription levels of <i>PR1</i> (encoding
365	pathogenesis-related protein 1), PR2 (encoding β -1,3-glucanase), PR5 (encoding
366	thaumatin-like proteins), npr1 (encoding regulatory protein NPR1), myc2 (encoding
367	transcription factor MYC2), coil (encoding coronatine-insensitive protein 1), aos
368	(encoding allene oxide synthase), hel (encoding hevein-like protein), erfl (encoding
369	ethylene-responsive transcription factor 1B), etr1 (encoding ethylene receptor 1), chiB
370	(encoding basic chitinase), and <i>pdf1.2</i> (encoding plant defensin) were measured. The
371	Arabidopsis actin gene was used as an internal reference. For these genes, primers
372	were listed in Table S6. Ct values (cycling threshold), which represent the relative
373	expression, were used for further analysis.

To correlate the SQR9 metabolites with each plant defense gene, qRT-PCR was performed to determine how these mutant strains affect the transcription of defense genes. The RNA of the shoot tissue of plants inoculated with SQR9 or mutant strains was extracted. Using the effect of wild-type SQR9 on the gene transcription in *Arabidopsis* as 100% efficiency, the lost activity of each mutant strain (contribution 379 of the elicitor for enhancing the transcription of the defense gene against SQR9) was 380 calculated for each plant defense gene using the following formula to show the 381 contribution of each compound. Statistical analyses of these transcriptions were 382 performed using ANOVA and shown in supplementary materials. The transcription levels of the defense gene in Arabidopsis inoculated with wild type SOR9, in 383 384 Arabidopsis inoculated with an elicitor-deficient mutant of SQR9 and in 385 un-inoculated Arabidopsis at 6 h post-inoculation were denoted with Q(SQR9WT), 386 Q(SQR9mutant) and Q(CK), respectively.

$$Contribution = \frac{(Q(SQR9WT) - Q(CK)) - (Q(SQR9mutant) - Q(CK))}{Q(SQR9WT) - Q(CK)}$$

388 Disease assays

387

389 Ten-day-old seedlings of wild-type *Arabidopsis* were transplanted into 200-mL

390 pots filled with vermiculite-peat soil mixture and allowed to grow for five weeks.

391 Seedlings were inoculated with 4 mL of SQR9 ($OD_{600}=1.0$) or its mutants.

Leaf injection of Pst DC3000 at 10⁶ CFU/mL was performed 4 days after 392 393 inoculation with SQR9 or its mutants. Ten millimolar MgCl₂ was injected as a mock 394 treatment. The population of Pst DC3000 was measured after inoculation for 3 and 6 395 days. Each leaf sample was washed with sterile water, soaked in 75% (v/v) ethanol 396 for 30 sec for surface sterilization, washed in sterile distilled water three times, and 397 then extracted using grinding beads and 1 mL of MgCl₂ (10 mM) in a tissue grinder. 398 Subsequently, appropriate dilutions were plated onto KB agar supplemented with 50 399 mg/L rifampicin and incubated at 28°C for 24 h. Afterward, rifampicin-resistant Pst 400 DC3000 colonies on plates were counted, and the *Pst* DC3000 density in the leaves
401 was thus determined and expressed as CFU per gram of leaf fresh weight (FW). This
402 experiment was repeated 12 times.

403 At 4 days post-inoculation with SQR9 or the mutants, five-week-old seedlings of Arabidopsis were sprayed with 5×10^5 spores/mL of B. cinerea. Water was included as 404 405 a mock treatment. Symptoms were scored at 2, 4 and 6 days post inoculation with B. cinerea. The area under disease progress curve (AUDPC) of each leaf was measured, 406 407 the disease incidence (DI) was calculated according to the incidence area based on 408 previously described methods (Madden and Hughes 1999: Jeger and 409 Viljanen-Rollinson 2001).

410

411 Supplementary data

412 Figure S1. Disease incidence and defense gene transcription in plant treated with pure413 surfactin.

414 Figure S2. Heatmap of the correlation between defense gene transcription and plant
415 defense hormone accumulation at different time points.

416 **Table S1.** Infection of *Pst* DC3000 on leaf after inoculation with SQR9 and mutants.

417 **Table S2.** Infection of *B. cinerea* on leaf after inoculation with SQR9 and mutants.

418 Table S3. Phytohormone accumulation in the roots and shoots of *Arabidopsis*419 inoculated with SQR9.

420 Table S4. Expression pattern of defense-related genes at different times after

421	treatment of SQR9.
422	Table S5. Expression pattern of defense-related genes in response to the inoculation
423	with SQR9 and mutants.
424	Table S6. Primers used in this study.
425	Acknowledgements
426	This work was financially supported by National Natural Science Foundation of
427	China (31572214, 31600088 and 31330069), the National Key Basic Research
428	Program of China (973 program, 2015CB150505), the National Key Research and
429	Development Program (2016YFE0101100 and 2016YFD0200300) and China
430	Postdoctoral Science Foundation (2016M591297 and 2017T100118). R. Z and Q. S
431	were also supported by the Key Projects of International Cooperation in Science and
432	Technology Innovation (2016YFE0101100), the 111 Project (B12009).
433	G.W and Y.X performed the experiments, Y.L and G.W analyzed data and wrote
434	the paper, G.Z, Q.S and R.Z designed the research.
435	
436	Conflict of interest
437	The authors declare that they have no conflicts of interest with the contents of this
438	article.
439	
440	Literature cited
441	Aleti, G., Lehner, S., Bacher, M., Compant, S., Nikolic, B., Plesko, M., Schuhmacher,

442 R., Sessitsch, A., and Brader, G. 2016. Surfactin variants mediate

443	species-specific biofilm formation and root colonization in Bacillus. Environ.
444	Microbiol. 18:2634–2645
445	Chen, L., Liu, Y., Wu, G., Veronican Njeri, K., Shen, Q., Zhang, N., and Zhang, R.
446	2016. Induced maize salt tolerance by rhizosphere inoculation of Bacillus
447	amyloliquefaciens SQR9. Physiol. Plant. 158:34-44
448	Chen, L., Liu, Y., Wu, G., Zhang, N., Shen, Q., and Zhang, R. 2017. Beneficial
449	rhizobacterium Bacillus amyloliquefaciens SQR9 induces plant salt tolerance
450	through spermidine production. Mol. Plant-Microbe Interact. 30:423-432
451	Dempsey, D. A., and Klessig, D. F. 2012. SOS - too many signals for systemic
452	acquired resistance? Trends Plant Sci. 17:538-545
453	Farace, G., Fernandez, O., Jacquens, L., Coutte, F., Krier, F., Jacques, P., Clément, C.,
454	Barka, E. A. I. T., Jacquard, C., and Dorey, S. 2015. Cyclic lipopeptides from
455	Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol.
456	Plant Pathol. 16:177–187
457	Fernández-Calvo, P., Chini, A., Fernández-Barbero, G., Chico, JM.,
458	Gimenez-Ibanez, S., Geerinck, J., Eeckhout, D., Schweizer, F., Godoy, M.,
459	Franco-Zorrilla, J. M., Pauwels, L., Witters, E., Puga, M. I., Paz-Ares, J.,
460	Goossens, A., Reymond, P., De Jaeger, G., and Solano, R. 2011. The
461	Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ
462	repressors and act additively with MYC2 in the activation of jasmonate
463	responses. Plant Cell. 23:701–715

464	Flemming, HC., and Wingender, J. 2010. The biofilm matrix. Nat. Rev. Microbiol.
465	8:623–33
466	Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and
467	necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205-227
468	Hamid, M., Der Sluis Ientse, V., Leender c, V. L., Monica, H., and Petwe A.h.m, B.
469	2005. Determinants of Pseudomonas putida WCS358 involved in inducing
470	systemic resistance in plants. Mol. Plant Pathol. 6:177-185
471	Hélène, C., Debois, D., Laurent, F., Edwin, D. P., Philippe, T., and Marc, O. 2015.
472	Lipopeptides as main ingredients for inhibition of fungal phytopathogens by
473	Bacillus subtilis/amyloliquefaciens. Microb. Biotechnol. 8:281-295
474	Huang, C., Tsay, J., Chang, S., and Yang, H. 2012. Dimethyl disulfide is an induced
475	systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag. Sci.
476	68:1306–1310
477	Iavicoli, A., Boutet, E., Buchala, A., and Métraux, J. 2003. Induced systemic
478	resistance in Arabidopsis thaliana in response to root inoculation with
479	Pseudomonas fluorescens CHA0. Mol. Plant-microbe Interact. 16:851-858
480	Jeger, M. J., and Viljanen-Rollinson, S. L. H. 2001. The use of the area under the
481	disease-progress curve (AUDPC) to assess quantitative disease resistance in crop
482	cultivars. Theor. Appl. Genet. 102:32-40
483	Kloepper, J. W. 1993. Plant growth promoting rhizobacteria as biological control
484	agents. Soil Microb. Technol. Ed. by B. Metting. : Marcel Dekker, Inc., New

485	York, pp 255—274
486	Kyungseok, P., Kloepper, J. W. and Ryu, CM. 2008. Rhizobacterial
487	exopolysaccharides elicit induced resistance on cucumber.J. Microbiol.
488	Biotechnol. 18:1095-1100
489	Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q., and Zhang, R. 2014. Responses of
490	beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal
491	pathogens through the alteration of antifungal compounds production. Front.
492	Microbiol. 5:1–10
493	Liu, Y., Chen, L., Wu, G., Feng, H., Zhang, G., Shen, Q., and Zhang, R. 2017.
494	Identification of root-secreted compounds involved in the communication
495	between cucumber, the beneficial Bacillus amyloliquefaciens, and the soil-borne
496	pathogen Fusarium oxysporum. Mol. Plant-Microbe Interact. 30:53-62
497	Liu, Y., Chen, L., Zhang, N., Li, Z., Zhang, G., Xu, Y., Shen, Q., and Zhang, R. 2016.
498	Plant-microbe communication enhances auxin biosynthesis by a root-associated
499	bacterium, Bacillus amyloliquefaciens SQR9. Mol. Plant-Microbe Interact.
500	29:324–330
501	Liu, Y., Zhang, N., Qiu, M., Feng, H., Vivanco, J. M., Shen, Q., and Zhang, R. 2014.
502	Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens
503	SQR9 by pathogen infection. FEMS Microbiol. Lett. 353:49-56
504	Madden, L. V., and Hughes, G. 1999. Sampling for plant disease incidence.
505	Phytopathology. 89:1080–1083

506	Mao, J. L., Miao, Z. Q., Wang, Z., Yu, L. H., Cai, X. T., and Xiang, C. B. 2016.
507	Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis
508	during primary root elongation by regulating ASA1 expression. PLoS Genet.
509	12:1–20
510	Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L.,
511	and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as
512	elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084-
513	1090
514	Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., and Van Wees, S. C. M. 2009.
515	Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol.
516	5:308–316
517	Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C.
518	M., and Bakker, P. A. H. M. 2014. Induced systemic resistance by beneficial
519	microbes. Annu. Rev. Phytopathol. 52:347-375
520	Ryu, CM., Farag, M. A., Hu, CH., Reddy, M. S., Kloepper, J. W., and Paré, P. W.
521	2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol.
522	134:1017–26
523	Ryu, CM, Hu, C., Reddy, M. S., and Kloepper, J. W. 2003. Different signaling
524	pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against
525	two pathovars of Pseudomonas syringae. New Phytol. 160:413-420
526	Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler,

527	P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A., and Langebartels,
528	C. 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine
529	lactone-producing rhizosphere bacteria. Plant, Cell Environ. 29:909–918
530	Shah, J., and Zeier, J. 2013. Long-distance communication and signal amplification in
531	systemic acquired resistance. Front. Plant Sci. 4:1-16
532	Shao, J., Xu, Z., Zhang, N., Shen, Q., and Zhang, R. 2015. Contribution of
533	indole-3-acetic acid in the plant growth promotion by the rhizospheric strain
534	Bacillus amyloliquefaciens SQR9. Biol. Fertil. Soils. 51:321-330
535	Sharifi, R., and Ryu, CM. 2016. Are bacterial volatile compounds poisonous odors
536	to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for
537	eliciting induced resistance, or both? Front. Microbilogy. 7:1-10
538	Wang, N., Liu, M., Guo, L., Yang, X., and Qiu, D. 2016. A novel protein elicitor
539	(PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in
540	tobacco. Int. J. Biol. Sci. 12:757-767
541	Wu, L., Wu, H., Chen, L., Yu, X., Borriss, R., and Gao, X. 2015. Difficidin and
542	bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity
543	against Xanthomonas oryzae rice pathogens. Sci. Rep. 5:12975
544	Xu, Z., Shao, J., Li, B., Yan, X., Shen, Q., and Zhang, R. 2013. Contribution of
545	bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and
546	biofilm formation. Appl. Environ. Microbiol. 79:808-815
547	Yan, X., Yu, H., Hong, Q., Li, S. 2008. Cre/lox system and PCR-based genome

548	engineering in Bacillus subtilis. Appl. Environ. Microbiol. 74:5556-5562
549	Yang, S. Y., Park, M. R., Kim, I. S., and Kim, Y. C. 2011. 2-Aminobenzoic acid of
550	Bacillus sp. BS107 as an ISR determinant against Pectobacterium carotovorum
551	subsp. carotovotrum SCC1 in tobacco. Eur. J. Plant Pathol. 129:371-378
552	Yi, HS., Yang, J. W., and Ryu, CM. 2013. ISR meets SAR outside: additive action
553	of the endophyte Bacillus pumilus INR7 and the chemical inducer,
554	benzothiadiazole, on induced resistance against bacterial spot in field-grown
555	pepper. Front. Plant Sci. 4:122
556	Yi, HS., Ahn, Y., Song, G. C., Ghim, SY., Lee, S., Lee, G., and Ryu, CM. 2016.
557	Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere
558	robustness. Front. Microbiol. 7:1–11
559	
560	

562 Figure captions

563	Figure 1. Induction of systemic resistance by Bacillus amyloliquefaciens SQR9 in						
564	Arabidopsis. Five-week-old seedlings were inoculated with SQR9. Four days later,						
565	leaves were injected or sprayed with Pst DC3000 or B. cinerea, respectively. (A)						
566	CFU of Pst DC3000 in the leaves of Arabidopsis plants inoculated by SQR9. (B)						
567	Disease incidence (DI) of Arabidopsis caused by Botrytis cinerea. (C) The area under						
568	the disease-progress curve (AUDPC) of Arabidopsis caused by Botrytis cinerea.						
569	Symptoms were scored at 2, 4 and 6 days post-inoculation. Disease incidence and the						
570	AUDPC were calculated following the method described previously (Madden and						
571	Hughes 1999; Jeger and Viljanen-Rollinson 2001). The values are the means \pm the						
572	standard deviation of 12 replicates. An asterisk (*) indicates statistically significant						
573	differences between plants inoculated with SQR9 and control plants without						
574	inoculation ($P \le 0.05$).						

575

Figure 2. Plant hormone accumulation in *Arabidopsis* treated with SQR9. Ten-day-old seedlings were treated with SQR9, and tissue sample of roots or shoots were harvested at the indicated time points. (A) Salicylic acid content in *Arabidopsis*. (B) Jasmonic acid content in *Arabidopsis*. (C) Ethylene content in *Arabidopsis*. The values are the means \pm standard deviation of 12 replicates. An asterisk (*) indicates a statistically significant difference (P \le 0.05).

583 Figure 3. Transcription of defense-related genes in *Arabidopsis* in response to SQR9 584 inoculation. Ten-day-old seedlings were treated with SQR9, and shoot samples were 585 harvested at the indicated time points for extracting total RNA. The results of real-time quantitative polymerase chain reaction analysis of (A) SA-related, (B) 586 587 JA-related, (C) ET-related and (D) JA/ET-related gene transcript levels in response to 588 SQR9 at different times post-inoculation. The values are the means \pm standard 589 deviation of 12 replicates. Different letters above the bars indicate significant 590 differences ($P \le 0.05$).

591

592 Figure 4. Disease incidence of *Arabidopsis* after treated by SOR9 or its mutants. 593 Five-week-old seedlings were inoculated with SQR9 or its mutants. Four days later, 594 leaves were injected with Pst DC3000 or B. cinerea. (A) Growth curves of Pst 595 DC3000 in the leaves of Arabidopsis inoculated with SQR9 or mutant strains and the 596 statistical analysis. Different letters indicate significant differences between samples $(P \le 0.05)$. (B) Disease severity of *Botrytis cinerea* in plants inoculated with SQR9 or 597 598 mutant strains. Symptoms were scored at 2, 4 and 6 days post-inoculation. Disease 599 incidence (DI) and the area under the disease-progress curve (AUDPC) were 600 calculated following the method described previously (Madden and Hughes 1999; 601 Jeger and Viljanen-Rollinson 2001). Different letters indicate significant difference 602 between samples ($P \le 0.05$). The results are means of 12 independent experiments.

604	Figure 5. Contribution of each elicitor produced by <i>Bacillus amyloliquefaciens</i> SQR9
605	to the enhanced expression of plant defense genes. The shown values were calculated
606	from the results of real-time quantitative polymerase chain reaction analysis of SA-,
607	JA- and JA/ET-related gene transcript levels in the shoots of Arabidopsis in response
608	to SQR9 and its mutants. Statistical analyses of these transcriptions were performed
609	using ANOVA and shown in supplementary materials. sfp, SQR9 deficient in
610	producing bacillomycin D, fengycin, surfactin, bacillaene, difficidin, macrolactin and
611	bacilysin; fen, fengycin; bam, bacillomycin D; srf, surfactin; bae, bacillaene; mln,
612	macrolactin; dfn, difficidin; ysnE, IAA; alsD, 2,3- butanediol; bac, bacilysin; epsD,
613	exopolysaccharides.
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	

626 Table 1. Bacterial and fungal strains used in this study

Strain	Description	Source
Bacillus amyloliquefaciens SQR9	A PGPR strain, isolated from cucumber rhizosphere	Cao et al. 2011
B. amyloliquefaciens SQR9∆bam::Tc ^r	Deficient in producing bacillomycinD	Xu et al. 2013
B. amyloliquefaciens SQR9 Δ fen:: Tc^r	Deficient in producing fengycin	Xu et al. 2013
B. amyloliquefaciens SQR9AsrfA::Crm ^r	Deficient in producing surfactin	Li et al. 2014
B. amyloliquefaciens SQR9∆bae∷Crm ^r	Deficient in producing bacillaene	This study
B. amyloliquefaciens SQR9/1dfn::Crm ^r	Deficient in producing difficidin	This study
B. amyloliquefaciens SQR9∆mln2::Crm ^r	Deficient in producing macrolactin	This study
	Deficient in producing bacillomycin D, fengycin,	
B. amyloliquefaciens SQR9∆sfp∷Erm ^r	surfactin, bacillaene, difficidin, macrolactin and bacilysin	Li et al. 2014
B. amyloliquefaciens SQR9∆bac∷Crm ^r	Deficient in producing bacilysin	This study
B. amyloliquefaciens SQR9 Δ alsD::Erm ^r	Deficient in producing 2,3-butanediol	This study
B. amyloliquefaciens SQR9∆epsD::Crm ^r	Deficient in producing extracellular polysaccharides	This study
B. amyloliquefaciens SQR9∆ysnE::Crm ^r	Reduced IAA synthesis	Shao et al. 2015
Pseudomonas syringae pv. Tomato		
DC3000	A bacterial pathogen strain	
Botrytis cinerea	A fungal pathogen strain	

Figure 1. Induction of systemic resistance by Bacillus amyloliquefaciens SQR9 in Arabidopsis. Five-week-old seedlings were inoculated with SQR9. Four days later, leaves were injected or sprayed with Pst DC3000 or B. cinerea, respectively. (A) CFU of Pst DC3000 in the leaves of Arabidopsis plants inoculated by SQR9. (B) Disease incidence (DI) of Arabidopsis caused by Botrytis cinerea. (C) The area under the disease-progress curve (AUDPC) of Arabidopsis caused by Botrytis cinerea. Symptoms were scored at 2, 4 and 6 days post-inoculation. Disease incidence and the AUDPC were calculated following the method described previously (Madden and Hughes 1999; Jeger and Viljanen-Rollinson 2001). The values are the means \pm the standard deviation of 12 replicates. An asterisk (*) indicates statistically significant differences between plants inoculated with SQR9 and control plants without inoculation (P \leq 0.05).

564x127mm (96 x 96 DPI)

Figure 2. Plant hormone accumulation in Arabidopsis treated with SQR9. Ten-day-old seedlings were treated with SQR9, and tissue sample of roots or shoots were harvested at the indicated time points. (A) Salicylic acid content in Arabidopsis. (B) Jasmonic acid content in Arabidopsis. (C) Ethylene content in Arabidopsis. The values are the means \pm standard deviation of 12 replicates. An asterisk (*) indicates a statistically significant difference (P \leq 0.05).

563x125mm (96 x 96 DPI)

Figure 3. Transcription of defense-related genes in Arabidopsis in response to SQR9 inoculation. Ten-day-old seedlings were treated with SQR9, and shoot samples were harvested at the indicated time points for extracting total RNA. The results of real-time quantitative polymerase chain reaction analysis of (A) SA-related, (B) JA-related, (C) ET-related and (D) JA/ET-related gene transcript levels in response to SQR9 at different times post-inoculation. The values are the means ± standard deviation of 12 replicates. Different letters above the bars indicate significant differences (P ≤ 0.05).

377x250mm (96 x 96 DPI)

Figure 4. Disease incidence of Arabidopsis after treated by SQR9 or its mutants. Five-week-old seedlings were inoculated with SQR9 or its mutants. Four days later, leaves were injected with Pst DC3000 or B. cinerea. (A) Growth curves of Pst DC3000 in the leaves of Arabidopsis inoculated with SQR9 or mutant strains and the statistical analysis. Different letters indicate significant differences between samples ($P \le 0.05$). (B) Disease severity of Botrytis cinerea in plants inoculated with SQR9 or mutant strains. Symptoms were scored at 2, 4 and 6 days post-inoculation. Disease incidence (DI) and the area under the disease-progress curve (AUDPC) were calculated following the method described previously (Madden and Hughes 1999; Jeger and Viljanen-Rollinson 2001). Different letters indicate significant difference between samples ($P \le 0.05$). The results are means of 12 independent experiments.

540x310mm (96 x 96 DPI)

Figure 5. Contribution of each elicitor produced by Bacillus amyloliquefaciens SQR9 to the enhanced expression of plant defense genes. The shown values were calculated from the results of real-time quantitative polymerase chain reaction analysis of SA-, JA- and JA/ET-related gene transcript levels in the shoots of Arabidopsis in response to SQR9 and its mutants. sfp, SQR9 deficient in producing bacillomycin D, fengycin, surfactin, bacillaene, difficidin, macrolactin and bacilysin; fen, fengycin; bam, bacillomycin D; srf, surfactin; bae, bacillaene; mln, macrolactin; dfn, difficidin; ysnE, IAA; alsD, 2,3- butanediol; bac, bacilysin; epsD, exopolysaccharides.

217x134mm (300 x 300 DPI)

Supplementary data

Figure S1. Disease incidence and defense gene transcription in plant treated with pure surfactin.

Figure S2. Heatmap of the correlation between defense gene transcription and plant defense hormone accumulation at different time points.

Table S1. Infection of Pst DC3000 on leaf after inoculation with SQR9 and mutants.

Table S2. Infection of B. cinerea on leaf after inoculation with SQR9 and mutants.

 Table S3. Phytohormone accumulation in the roots and shoots of *Arabidopsis* inoculated with SQR9.

 Table S4. Expression pattern of defense-related genes at different times after

 treatment of SQR9.

 Table S5. Expression pattern of defense-related genes in response to the inoculation

 with SQR9 and mutants.

Table S6. Primers used in this study.

Figure S1. Disease and gene transcription in plant treated by pure surfactin. (A) Transcription of defense-related genes in Arabidopsis in response to SQR9 treatment. (B) Growth curves of *Pst* DC3000 in the leaves of *Arabidopsis* treated by surfactin. (C and D) Disease severity of *Botrytis cinerea* in plants inoculated with SQR9 or mutant strains. Symptoms were scored at 2, 4 and 6-day post-inoculation. Disease incidence (DI) and the area under the disease-progress curve (AUDPC) were calculated following the method described previously (Madden and Hughes 1999; Jeger and Viljanen-Rollinson 2001). Different letters indicate significant difference between samples ($P \le 0.05$).

Figure S2. Correlation between defense gene expression and hormone accumulation at different time points. For each time points after inoculation of SQR9 and mutants, phytohormones were measured. All these data was correlated with the expression of defense-related genes at 6 h. The resulted R values were plotted. Blue color indicate a high correlation between the hormone content at this time and the gene expression at 6 h, while in opposite, red color indicate a low correlation.

	0d (10 ⁶ CFU/g FW)	3d (10 ⁶ CFU/g FW)	6d (10 ⁶ CFU/g FW)
CK	1.58±0.017a	251.18±15.24c	630.98±60.10e
SQR9	2.04±0.022a	12.58±2.24a	16.22±3.54a
∆sfp	1.62±0.36a	158.48±10.27bc	478.63±12.18d
∆fen	2.51±0.32a	173.78±15.18bc	309.03±17.14d
∆bam	1.31±0.26a	125.89±5.14c	257.04±9.32d
∆srf	1.65±0.25a	107.15±6.18bc	338.84±21.26d
∆mln	1.51±0.0018a	162.18±16.21bc	316.23±31.62d
∆dfn	1.77±0.017a	75.85±7.58b	138.04±10.62c
∆bae	1.54±0.017a	20.41±2.04ab	51.28±51.28b
∆ysnE	2.13±0.023a	26.91±4.28ab	33.11±5.15ab
∆alsD	1.38±0.20a	61.66±7.15b	162.18±12.16c
∆epsD	1.65±0.32a	95.50±6.12b	251.19±9.17c
∆bac	1.47±0.21a	64.56±3.21b	104.71±14.15bc

Table S1. Infection of Pst DC3000 on leaf after inoculation with SQR9 and mutants.

Different letters above the bars indicate significant differences ($P \le 0.05$).

	DI^{a}			AUDPC		
	2d	4d	6d	2d	4d	6d
СК	25.00a	45.33c	71.33c	25.00a	95.33d	237.00d
SQR9	21.33a	28.00a	49.67a	21.33a	70.667a	169.67a
∆sfp	24.33a	42.00c	68.67c	24.33a	90.67cd	225.67cd
∆fen	22.33a	33.67b	59.67b	22.33a	78.33b	194.00b
∆bam	24.67a	39.00bc	62.33bc	24.67a	88.33c	214.33c
∆srf	24.74a	40.33bc	65.33bc	24.74a	89.82c	220.24cd
∆mln	22.67a	33.67b	59.00b	22.67a	79.00b	194.33b
∆dfn	23.67a	39.00bc	63.33bc	23.67a	86.33c	212.33c
∆bae	24.67a	36.67bc	62.67bc	24.67a	86.00c	210.00c
∆ysnE	24.33a	34.33b	58.64b	24.33a	83.00bc	200.31c
∆alsD	23.33a	30.67a	57.00b	23.33a	77.33b	188.33ab
∆epsD	25.33a	43.67c	68.67c	25.33a	94.33d	232.00d
∆bac	24.67a	42.00c	63.67bc	24.67a	91.33cd	221.67cd

Table S2. Infection of *B. cinerea* on leaf after inoculation with SQR9 and mutants.

a: Disease incidence (DI) and the area under the disease-progress curve (AUDPC) were calculated following the method described previously (Madden and Hughes 1999; Jeger and Viljanen-Rollinson 2001). Different letters indicate significant difference between samples (P ≤ 0.05).

		CK-roots (ng/g	SQR9-roots (ng/g	CK-shoots (ng/g	SQR9-shoots (ng/g
		FW)	FW)	FW)	FW)
	0d	1773.53±63.72	1773.91±72	2268.72±37.45	2268.72±37.45
	1d	1768.17±118.1 2	2559.51±107.17*	2251.54±49.48	2470.75±82.69
S	2d	1734.49±32.11	2061.42±64.27*	2302.28±99.01	2714.14±75.24*
А	4d	1736.97±117.7 9	2013.30±98.05	2285.57±102.41	2909.85±90.34*
	6d	1767.59±147.6 6	1865.89±70.05	2250.66±46.30	2788.95±54.82*
	0d	1752.16±82.46	1752.16±82.46	2752.62±82.58	2752.62±82.58
JA	1d	1749.15±150.8 1	3483.28±91.55*	2770.11±36.96	3008.57±19.29
	2d	1778.83±79.80	2103.72±96.12	2780.72±69.89	3555.50±57.16*
	4d	1769.36±121.3 8	2019.96±86.31	2837.05±112.01	3887.08±73.57*
	6d	1737.23±92.22	1886.56±56.55	2802.97±39.53	3465.38±79.68*
	0d	1872.25±45.37	1872.25±45.37	2521.72±38.74	2521.72±38.74
	1 d	1883.35±87.51	2622.24±99.02*	2536.19±25.47	2654.28±82.61
	2d	1942.25±61.11	2553.86±116.61*	2521.87±97.39	2983.92±53.64*
ET	4d	1899.30±158.3 5	2370.93±121.10*	2503.21±34.71	2958.57±71.17*
	6d	1851.31±126.3 5	2098.76±76.73	2566.93±26.92	2922.48±93.86*

Table S3. Phytohormone accumulation in the roots and shoots of *Arabidopsis* inoculated with SQR9.

Asterisk (*) indicates statistically significant difference.

Table S4. Expression pattern of defense-related genes at different times after treatment of SQR9.

	0h	1h	3h	6h	12h	24h	48h	
PRI	1.00±0.12 ^a	1.57±0.067	2.27±0.22	3.71±0.22	3.25±0.18	2.93±0.21	0.96±0.22	
PR2	1.00±0.11	1.91±0.088	1,60±0.064	1.75±0.091	1.14±0.12	1.01±0.23	0.99±0.070	
PR5	1.00±0.23	1.30±0.13	1.61±0.16	1.68±0.055	1.48±0.095	1.35±0.17	1.06±0.068	
NPR1	1.00±0.12	4.67±0.25	4.65±0.19	8.42 ± 0.088	5.57±0.13	6.13±0.14	2.79±0.055	
AOS	1.00±0.18	5.66±0.14	5.48±0.12	4.37±0.047	2.78±0.11	1.99±0.13	1.80±0.080	
COII	1.00±0.10	3.18±0.27	6.99±0.17	2.16±0.0081	2.37±0.19	1.90±0.15	1.53±0.054	
MYC2	1.00±0.044	1.03±0.017	1.15±0.041	1.69±0.21	4.71±0.18	2.38±0.23	1.99±0.12	
HEL/PR4	1.00±0.14	2.83±0.085	3.98±0.15	3.41±0.37	3.13±0.13	2.83±0.093	2.81±0.13	
ERF1	1.00±0.046	1.68±0.0078	2.86±0.21	3.18±0.43	1.47±0.35	1.50±0.20	1.41±0.24	
CHIB/PR3	1.00±0.051	5.23±0.12	5.43±0.045	7.69±0.29	11.71±0.18	4.32±0.32	2.09±0.28	
PDF1.2	1.00±0.079	1.36±0.056	1.28±0.12	2.54±0.22	5.50±0.14	3.64±0.17	3.45±0.22	

a Numbers in table indicate the expression level in relation with that at 0 h post-inoculation.

Molecular Plant-Microbe Interactions "First Look" paper • http://dx.doi.org/10.1094/MPMI-11-17-0273-R • posted 01/08/2018 This paper has been peer reviewed and accepted for publication but has not yet been copyedited or proofread. The final published version may differ.

	PR1 ^a	PR2	PR5	NPRI	AOSI	COII	MYC2	ERFI	HEL/PR4	CHIB/PR3	PDF1.2
СК	1.00±0.012a	1.00±0.035a	1.00±0.028a	1.00±0.082a	1.00±0.085a	1.00±0.026a	1.00±0.022a	1.00±0.044a	1.00±0.030a	1.00±0.073a	1.00±0.10a
SQR9	2.67±0.053c	1.53±0.0057c	1.69±0.016d	1.99±0.11c	4.06±0.060d	3.45±0.067d	3.41±0.10c	2.16±0.013c	2.04±0.031c	2.24±0.053c	3.45±0.0069d
∆sfp	1.51±0.12ab	1.07±0.22a	1.10±0.035ab	1.08±0.073a	1.85±0.12b	1.44±0.11ab	1.54±0.12ab	1.18±0.020a	1.16±0.0031a	1.26±0.095a	1.38±0.054ab
∆fen	2.22±0.065bc	1.16±0.026ab	1.33±0.011bc	1.46±0.11b	2.54±0.12bc	1.66±0.14ab	2.22±0.027b	2.00±0.011c	1.73±0.019b	1.99±0.014bc	2.68±0.012c
∆bam	1.89±0.069b	1.25±0.0041b	1.51±0.042c	1.41±0.12b	2.39±0.046bc	2.21±0.050bc	2.58±0.11bc	1.93±0.10c	1.60±0.084b	1.82±0.090b	2.38±0.062bc
∆srf	1.87±0.12b	1.42±0.050c	1.24±0.019b	1.31±0.072b	2.10±0.12b	2.33±0.099bc	1.95±0.10b	1.72±0.010b	1.22±0.091ab	1.50±0.087ab	1.47±0.085ab
∆bae	1.78±0.090b	1.20±0.038ab	1.43±0.030c	1.50±0.11b	3.31±0.12c	2.92±0.13c	3.21±0.13c	1.83±0.041bc	1.58±0.058b	1.58±0.017ab	2.21±0.060bc
∆mln	2.23±0.11bc	1.17±0.0041ab	1.25±0.042b	1.58±0.12b	2.49±0.083bc	3.26±0.15c	2.36±0.12bc	1.61±0.011b	1.27±0.014ab	1.55±0.090ab	1.97±0.062b
∆dfn	2.25±0.078bc	1.31±0.050bc	1.33±0.038bc	1.40±0.012b	3.12±0.042c	3.06±0.20c	2.87±0.12bc	1.23±0.020ab	1.56±0.018b	1.96±0.087bc	2.06±0.086b
∆bac	1.81±0.015b	1.20±0.036ab	1.15±0.060ab	1.30±0.033b	1.73±0.017b	2.78±0.16c	1.95±0.11b	1.20±0.041ab	1.23±0.013ab	2.23±0.024c	2.21±0.037bc
∆alsD	2.61±0.021c	1.11±0.028ab	1.33±0.062bc	1.61±0.032bc	2.88±0.12c	2.14±0.019bc	2.83±0.089bc	1.93±0.015c	1.34±0.0097ab	1.74±0.034b	1.86±0.017b
∆ysnE	2.54±0.027c	1.34±0.012bc	1.16±.035ab	1.55±0.018b	1.95±0.084b	2.54±0.12c	3.22±0.16c	1.94±0.10bc	1.53±0.029b	1.91±0.044bc	2.59±0.026c
∆epsD	2.53±0.073c	1.09±0.027a	1.21±0.086b	1.68±0.022bc	3.21±0.015c	1.83±0.035b	2.45±0.083bc	2.08±0.035c	1.67±0.012b	2.24±0.030c	2.35±0.044bc

Table S5. Expression pattern of defense-related genes in response to the inoculation with SQR9 and mutants.

a Numbers in table indicate the expression level in relation with that in CK

Table S6. Primers used in this study

Name	Sequence(5'to3')	Target gene
ACTIN2-F	CCTGCCATGTATGTTGCCATT	
ACTIN2-R	AATCGAGCACAATACCGGTTGT	Internal reference
PR1-F	AGGTGCTCTTGTTCTTCCCT	
PR1-R	ACCCCAGGCTAAGTTTTCCC	Detection of expression of PR1
PR2-F	TGGTGTCAGATTCCGGTACA	
PR2-R	TCATCCCTGAACCTTCCTTG	Detection of expression of PR2
PR5-F	GGAACAATTGCCCTACCACC	
PR5-R	GCCGTTACATCTTAGACCGC	Detection of expression of PR5
NPR1-F	ACCGATAACACCGACTCCTC	
NPR1-R	GCACCGGTGGAAAGAAACTT	Detection of expression of NPR1
AOS-F	TGAGTTTGTGCCGGAGAGAT	
AOS-R	ATCACAAACAACCTCGCCAC	Detection of expression of AOS
COI1-F	TCAAATCGGTGCACTTCCGA	
COI1-R	ACCTCAAAAGCATCGAGCCA	Detection of expression of COI1
MYC2-F	ATAAATCTCCAGCTCCGCCG	
MYC2-R	AAGCGTTTGCAACGGGTAAC	Detection of expression of MYC2
ERF1-F	AGGATGGTTGTTCTCCGGTT	
ERF1-R	AGACCCCAAAAGCTCCTCAA	Detection of expression of ERF1
HEL-F	ATCTGCTGCAGTCAGTACGG	
HEL-R	TGAGCTCATTGCCACAGTCG	Detection of expression of HEL
CHIB-F	GCTTCAGACTACTGTGAACC	
CHIB-R	TCCACCGTTAATGATGTTCG	Detection of expression of CHIB
PDF1.2-F	CACCCTTATCTTCGCTGCTC	
PDF1.2-R	GCACAACTTCTGTGCTTCCA	Detection of expression of PDF1.2

Madden, L. V., and Hughes, G. 1999. Sampling for plant disease incidence. Phytopathology. 89:1080–1083

Jeger, M. J., and Viljanen-Rollinson, S. L. H. 2001. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor. Appl. Genet. 102:32–40