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Abstract: Land surface window emissivity is a key parameter for 

estimating the longwave radiative budget. The combined radiative transfer 

model (RM) with neural network (NN) algorithm is utilized to directly 

estimate the window (8–12 um) emissivity from the brightness temperature 

of the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) with 90 m spatial resolution. Although the estimation accuracy is 

very high when the broadband emissivity is estimated from AST05 

(ASTER Standard Data Product) by using regression method, the accuracy 

of AST05 is about ± 0.015 for 86 spectra which is determined by the 

atmosphere correction for ASTER 1B data. The MODTRAN 4 is used to 

simulate the process of radiance transfer, and the broadband emissivity is 

directly estimated from the brightness temperature of ASTER 1B data at 

satellite. The comparison analysis indicates that the RM-NN is more 

competent to estimate broadband emissivity than other method when the 

brightness temperatures of band 11, 12, 13, 14 are made as input nodes of 

dynamic neural network. The estimation average accuracy is about 0.009, 

and the estimation results are not sensitive to instrument noise. The RM-

NN is applied to extract broadband emissivity from an image of ASTER 

1B data in China, and the comparison against a classification based 

multiple bands with 15 m spatial resolution shows that the estimation 

results from RM-NN are very good. 
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1. Introduction 

In recent years, the study of Earth’s radiation has made the remote sensing of broadband 

emissivity as an important issue because of the extensive requirement of broadband 

emissivity information for estimation of energy balance. The surface emissivity at surface 

windows wavelengths is one of critical parameters in earth-atmosphere system radiation 

budget studies. An empirical emissivity is used in many numerical weather predictions and 

land surface energy balance model. Although it is very difficult to obtain the emissivity, 

many efforts have been devoted to the establishment of methodology for estimating 

broadband emissivity from remote sensing data. The broadband emissivity is obtained by 

classifying data with corresponding spectral libraries [1–4]. The advantage of this method is 

relative easy to obtain the broadband emissivity, but it cannot reflect the dynamic change of 

emissivity with the change of environment and the time. As we all know that the vegetation 

is changed in different season, especially for crops. 

The ASTER is an imaging instrument aboard the Terra satellite, which was launched in 

December 1999 as part of the National Aeronautics and Space Administration’s (NASA’s) 

Earth Observing System (EOS). ASTER has 15 bands, which cover the visible, near-infrared, 

short-wave infrared, and thermal infrared regions, and the spatial resolution is from 15 to 90 

m [5]. Ogawa et al. [6] used regression method to estimate the broadband (8-12 um) 

emissivity from AST05 data, and the error of broadband emissivity is about ± 0.005 for 

simulation data. AST05 is five thermal infrared channels emissivity product which are 

produced by using Temperature-Emissivity Separation (TES) algorithm [7]. Based on 

numerical simulation for 86 laboratory reflectance spectra of rocks, soils, vegetation, snow 

and water, the errors of emissivities estimated by TES algorithm are within about ± 0.015 

under given that the atmosphere correction is very good. That means that the error of 

broadband emissivity is about ± 0.02 for 86 laboratory reflectance spectra in the ideal 

situation. As we all know that, the number of reflectance spectra is more than 86, and the 

accuracy of atmosphere correction cannot be guaranteed because we cannot obtain the water 

vapor content with same resolution. So the estimation accuracy needs to be improved further. 

In Section 2 of this paper we will present why and how to improve estimation accuracy 

by using a combined radiative transfer model (RM) neural network (NN) algorithm to 
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estimate broadband emissivity from ASTER 1B data. In Section 3 the sensitivity and 

application analysis will be made. Finally, conclusions are given in Section 4. 

2. RM-NN Methods for estimating broadband emissivity 

The broadband emissivity (
8 12
ε − ) between 8 and 12um is defined as Eq. (1) [6]. 
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where ( )ε λ is spectral emissivity at the wavelength λ , ( , )B Tλ is Planck function, and T is 

surface temperature. Due to the influence of atmosphere, just the window band emissivity at 

remote sensor can be obtained. Ogawa et al. (2003) proposed a regression method for 

estimating broadband emissivity (
8 12
ε − ) by using five thermal infrared bands. The 

computation expression is as Eq. (2): 

 
8 12 10 11 12 13 14

0.014 0.145 0.241 0.467 0.004 0.128.ε ε ε ε ε ε− = + + + + +  (2) 

257 spectra are collected from ASTER spectral library [8, 9], and 49 spectra are selected 

from [10]. We assume that T = 300 K in this analysis, and the Eq. (1) is used to compute the 

broadband emissivity between 8 and 12um. The comparison between truth emissivity and 

emissivity estimated by Eq. (2) is like Fig. 1. The average error of emissivity is under 0.006. 
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Fig. 1. The comparison between truth emissivity and emissivity estimated by regression 

method. 

Although the accuracy of the method mentioned above is very high, it is determined by 

the accuracy of the each thermal band emissivity which is retrieved from the brightness 

temperature at satellite. The errors of emissivities estimated by TES algorithm are within 

about ± 0.015 for 86 spectra under given that the atmosphere correction is very good [7]. So 

the accuracy is about ± 0.02 in ideal conditions. 

Many studies have proved the inherent capabilities of the NN to perform classification, 

function approximation, optimization computation, and self-learning. The complicated 

relationships between geophysical parameters determine that the NN is one of the best ways 

to solve the complex inverse problem [11–13]. Mao et al [5, 13] made much analysis and 

proved that the accuracy can be improved if we use the optimized algorithm neural network 

to retrieve land surface temperature and emissivity from ASTER data. So we make an 

analysis for estimating broadband emissivity from brightness temperature at satellite. The 

MODTRAN4 [14] is used to simulate the process of radiance transfer. We use every band 
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emissivity in bands 10–14 as input parameters for MODTRAN4. The range of LST is from 

270 to 320 K with step size 10 K, and the near surface air temperature (at 2 m height) is 

arbitrarily assumed from 273 to 310 K with step sizes of 3 and 5 K. The range of atmospheric 

water vapor content is from 0.2 to 4 g cm-2 with a step size of 0.5 g cm-2, and the 

atmospheric profile of midlatitude summer is used for simulation. These simulation data sets 

are viewed as reference data from a known ground truth. We divide the simulation data 

randomly into two parts. The first part 8431 sets are made as training data, and the other 

2253 sets are testing data. The brightness temperatures of five thermal bands are made as five 

input nodes, and the broadband emissivity is made as output node. In this study, we select the 

dynamic learning neural network (DL) [11] to estimate broadband emissivity. The DL is 

different from a general neural network in that it uses the Kalman filtering algorithm to 

increase the convergence rate in the learning stage and enhance separately the ability for the 

highly nonlinear boundaries problem [11]. The initial neural network weights are set to be 

small random numbers (−1, 1). The Kalman filtering process is a recursive mean square 

estimation procedure. Each updated estimate of neural network weight is computed from the 

previous estimate and the new input data. The weights connected to each output node can be 

updated independently. Part of test results is as Table 1. The average error of broadband 

emissivity is under 0.012 when two hidden layers are with 500 nodes each. 

Table 1. The Estimated Error from Brightness Temperatures in Bands 10-14 at Satellite 

Hidden 

nodes 

Emissivity 

Average Error Average Error (Percent) R SD 

100-100 0.0264 0.0245 0.428 0.041 

200-200 0.023 0.0238 0.465 0.0334 

300-300 0.0221 0.0228 0.482 0.029 

400-400 0.0157 0.0203 0.576 0.027 

500-500 0.0113 0.0116 0.794 0.009 

600-600 0.0126 0.0129 0.726 0.0111 

700-700 0.0138 0.0141 0.69 0.0134 

800-800 0.0148 0.0154 0.64 0.0211 

aR: Correlation coefficient; SD: Standard deviation of the fit. 

The band 10 has some interference for estimation accuracy because transmittance of band 

10 is very low. So we make four brightness temperatures of band 11-14 as four input nodes, 

and broadband emissivity is made as output node. Part of test results is as Table 2. The 

average error of broadband emissivity is about 0.009 when two hidden layers are with 700 

nodes each and the distribution of average error is like Fig. 2. The accuracy is improved 

when we use the brightness temperatures of bands 11-14 as input nodes. This method 

overcomes the difficulty of atmosphere correction in regression method, which simplifies the 

computation process and improves estimation accuracy. Shown from the hidden nodes in 

Table 1 and Table 2, the process of radiance transfer is very complicated. 
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Table 2. The Estimated Error from Brightness Temperature in Bands 11-14 at Satellite 

Hidden 

nodes 

Emissivity 

Average Error Average Error (Percent) R SD 

100-100 0.0127 0.0131 0.733 0.0143 

200-200 0.0125 0.0129 0.733 0.0131 

300-300 0.0117 0.0121 0.752 0.012 

400-400 0.0111 0.0114 0.766 0.01 

500-500 0.0101 0.0114 0.786 0.011 

600-600 0.0097 0.011 0.791 0.0099 

700-700 0.0091 0.0095 0.837 0.0081 

800-800 0.0094 0.0098 0.814 0.0092 

aR: Correlation coefficient; SD: Standard deviation of the fit. 
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Fig. 2. . The distribution of average error. 

3. Sensitivity and application analysis 

The broadband emissivity is directly estimated from brightness temperatures at satellite, so 

the sensitivity is mainly determined by Sensor. The base line performance requirements of 

bands 10-14 is like first three columns in Table 3. The estimation error of broadband 

emissivity is in fourth column in Table 3. The brightness temperatures of bands 11-14 at 

sensor are higher 240 K in most conditions, and estimation error of broad emissivity is less 

than 0.016. Thus, the estimation results are not sensitive for instrument noise. 

Table 3. The Sensitivity Analysis for Algorithm 

Spectral 

Coverage 

Rang of Bright 

Temperature at Satellite 

Absolute Temperature 

Accuracy 

Estimation Error of 

Broadband Emissivity 

8.3- 11.65 µm 

200 - 240 K ≤3 K 0.016 

240 - 270 K ≤2 K 0.0013 

270 - 340 K ≤1 K 0.0095 

340 - 370 K ≤2 K 0.001 
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In order to give an application example, we use this DL neural network, which has been 

trained above to estimate the broadband emissivity from ASTER 1B data. The inputs of 

neural network are brightness temperature (
i

T , i  = 11/12/13/14), and the output is the 

broadband emissivity. We select an ASTER image in Heilongjiang province, China 

(09/09/2005) as research region. Figure 3(a) is the classification map by using band 1, 2, 3 

with 15 m spatial resolution. Figure 3(b) is the broadband emissivity estimated by RM-NN 

with 90 m spatial resolution. Shown from Fig. 3, the broad emissivity is almost consistent 

with the classification map. 

 

Fig. 3. (a) Classification map (band 1, 2, 3), (b) broadband emissivity. 

4. Conclusion 

The regression method for estimating broadband emissivity from ASTER data is suitable for 

86 spectra, and deviation is relative large because some spectral curve is very different from 

them. The other disadvantage is that the accuracy is determined of the AST05 product, which 

is influenced by atmosphere correction. It is very difficult to obtain the atmosphere 

parameters to eliminate the influence of the atmosphere, which make this method 

complicated. The accuracy is about ± 0.02 in ideal conditions. 

We utilize MODTRAN4 to simulate data to train and test neural networks. The test 

results indicate that RM–NN is very robust. The estimated accuracy by using brightness 

temperature of band 11-14 is higher than by using brightness temperatures of band 10-14 as 

input nodes of neural network because the transmittance of band 10 is very low. The 

accuracy is about 0.009 when the number of hidden layers is two and the number of hidden 

nodes is 700–700. The sensitivity analysis indicates that the noise of instrument has not much 

influence for the estimation error. The trained neural network (DL) is used to estimate 

broadband emissivity from the ASTER 1B data. The comparison analyses indicate that the 

estimation results by RM–NN is almost consistent with classification map with 15 m spatial 

resolution. The main purpose of this study proves that RM–NN is competent for estimating 

broadband emissivity, and simplifies the estimation process and improves the estimation 

accuracy. We will do further application analysis that will be reported in future and will 

make RM–NN more robust and suitable for more conditions. 

Acknowledgments 

This work was supported by 973 Program (No. 2010CB951503); the National Natural 

Science Foundation of China (No. 40930101). 

 

#170933 - $15.00 USD Received 20 Jun 2012; revised 12 Aug 2012; accepted 13 Aug 2012; published 17 Aug 2012
(C) 2012 OSA 27 August 2012 / Vol. 20,  No. 18/ OPTICS EXPRESS  20101




