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A B S T R A C T

Soil organic matter (SOM) in subsoils stores more than half of terrestrial organic carbon (C), and may sequestrate
more C with increasing organic input due to its low C content (or high mineral reactivity) and high chemical
stability. Organic inputs can stimulate microbial decomposition of native SOM (known as the priming effect),
while being microbially decomposed and transformed into SOM. Yet, microbial controls over these processes and
their influence on soil carbon change in soil profile remain elusive because of technical challenge to separate
them. We overcame this challenge by employing a novel approach of combining 13C and 12C isotopes with
quantitative solid-state 13C nuclear magnetic resonance (NMR). We used soil samples taken from three soil
horizons in a Mollisol profile that dominated with fused-ring aromatics for a 43-day incubation. The signal
intensities of the most dominant fused-ring aromatics and nonpolar alkyl groups were reduced due to the
priming effect following the addition of 12C enriched glucose. Those signal intensities of O-alkyl and nonpolar
alkyl groups increased in SOM spectra following the addition of 13C-labeld glucose, demonstrating accumulation
of glucose and microbial residues. With the increasing glucose concentration, priming effect estimated using
isotopic method and the magnitudes of signal loss estimated using 13C NMR both increased as exemplified for the
Ap horizon soil. However, soil organic C content increased only when the added glucose concentration was
beyond a previously non-quantified priming saturation threshold (between 36.0 and 100.0 g glucose-C kg−1

SOM-C). The increase of soil organic C was larger in the subsoils than in the topsoil due to lower microbial
biomass, higher microbial growth efficiency (MGE) and mineral reactivity, which were related to the reduced
priming effect and enhanced accumulation of microbial and glucose residues in the subsoils. The higher MGE in
the subsoils agreed with stronger shifts of microbial community composition, characterized by phosphorous lipid
fatty acid profiling, with changing glucose concentration during the incubation. Our findings highlighted the
importance of priming saturation threshold, microbial mediation and mineral reactivity, but not SOM recalci-
trance, in controlling the dynamics of SOM. Our study provided a novel approach to quantify these parameters
and understand the controlling factors in relation to different plant types and soil types.

1. Introduction

Soil organic matter (SOM) contains more carbon (C) than plant

biomass and atmospheric CO2 combined, and more than half of soil C is
stored in subsoils down to 2m (Jobbágy and Jackson, 2000). Even
minor changes of soil C may have significant implications for the
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