SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • RESEARCH ARTICLE

Soil microbial biomass and extracellular enzymes regulate nitrogen mineralization in a wheat-maize cropping system after three decades of fertilization in a Chinese Ferrosol

Sehrish Ali¹ · Li Dongchu² · Huang Jing² · Waqas Ahmed³ · Muhammad Abbas¹ · Muhammad Qaswar¹ · Christian Kofi Anthonio¹ · Zhang Lu² · Wang Boren² · Xu Yongmei⁴ · Zhang Huimin^{1,5}

Received: 25 May 2020 / Accepted: 30 August 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Purpose Soil net nitrogen (N) mineralization is a vital process that impacts the global N cycling and regulates the N availability for plant development. The objectives of this study were to evaluate the response of N mineralization to long-term organic versus inorganic fertilization and to quantify the relationships between N mineralization and soil microbial characteristics in the ferrosol (red soil) of South China after 30 years of mineral and manure application in a wheat-maize cropping system.

Materials and methods Soil was sampled from a wheat-maize rotation system, consisting of five treatments. The treatments included (1) CK (no fertilizer), (2) PK (synthetic phosphorus and potassium fertilizer), (3) NK (synthetic nitrogen and K fertilizer), (4) N (synthetic N fertilizer), and (5) NPKM (synthetic NPK fertilizer and manure). The sampled soil was analyzed for physicochemical parameters and incubated for the determination of N mineralization, soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and associated soil enzymes related to C and N cycling.

Results and discussion Results showed that NPKM increased soil organic carbon (SOC), available P (AP), total P (TP), and total nitrogen (TN) by 132%, 880%, 293%, and 76% respectively, over the control (CK). Among different treatments, soil microbial biomass nitrogen (SMBN) and carbon (SMBC) were highest under the NPKM treatment. N-cycling and P-cycling enzyme activities also showed significant differences among treatments. *N*-Acetyl- β -D-glucosaminidase (NAG), leucine-aminopeptidase (LAP), and acid phosphatase (AcP) activities were also highest under the NPKM treatment, at 650.36, 32.36, and 23.41 (mol g⁻¹ h⁻¹), respectively. A linear increase was observed in the NO₃⁻-N and NH₄⁺-N concentrations throughout the 90-day incubation period. NPKM showed a maximum N mineralization potential (N_o) and mineralization rate constant, k (NMR), at the end of the incubation period. A principal component analysis (PCA) interpreted the differences among fertilization and their effects on net N mineralization. A significant ($p \le 0.05$) positive correlation was observed between SMBC ($R^2 = 0.87$), SMBN ($R^2 = 0.92$), enzyme activities, and the N_o. Structural equation modeling (SEM) revealed that SOC, TN, and TP directly affected mineralization, while SMBC and SMBN indirectly affected the net mineralization.

Conclusion Manure input increased the extracellular enzymes in soil, which accelerated the net N mineralization due to enhanced soil microbial activities. Consequently, long-term manure addition appears to be an optimal approach to meet the nutrient demands and to enhance the N availability in a wheat-maize cropping system.

Responsible editor: Yan He

Zhang Huimin zhanghuimin@caas.cn

- ¹ National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- ² National Observation Station of Qiyang Agri-ecology System; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang 426182, Hunan, China
- ³ Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- ⁴ Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- ⁵ College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China