SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • RESEARCH ARTICLE

The links between potassium availability and soil exchangeable calcium, magnesium, and aluminum are mediated by lime in acidic soil

Tianfu Han^{1,2} • Andong Cai¹ • Kailou Liu^{1,3} • Jing Huang¹ • Boren Wang¹ • Dongchu Li¹ • Muhammad Qaswar¹ • Gu Feng² • Huimin Zhang¹

Received: 5 June 2018 / Accepted: 25 September 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Purpose The aims of this study were to investigate the links between potassium (K) uptake by crops and soil K, exchangeable calcium (Ca^{2+}), magnesium (Mg^{2+}), and aluminum (Al^{3+}) when using lime in acidic soil in southern China.

Materials and methods Soil samples of three treatments (chemical NP fertilizers, NPK, and NPK plus straw (NPKS)) were collected from a 26-year field experiment (0–20 cm) and then a rhizobox experiment was conducted with seven lime application rates (0–2.26 g kg⁻¹). We investigated the soil exchangeable K⁺, Ca²⁺, Mg²⁺, and Al³⁺ and non-exchangeable K (NEK) in the rhizosphere soil (RS) and non-rhizosphere soils (NRS), and K uptake by crops.

Results and discussion As lime addition rates increased, the average concentration of exchangeable K (EK) in RS under NPK and NPKS treatments decreased to 46.5 mg kg⁻¹ and 70.4 mg kg⁻¹ for maize and wheat, respectively. In treatments with lime application, the NEK concentration was higher in RS and NRS compared with the no-lime in NP treatment but was lower in RS in treatments with K fertilizer input (NPK and NPKS). The K uptake by crops under lime application significantly (p < 0.05) increased by 37.6% to 155.1% compared with the no-lime treatments. Lime application significantly increased soil exchangeable Ca²⁺ (42.9 to 255.7%) and decreased exchangeable Al³⁺ (23.7 to 86.6%). According to structural equation modeling, lime indirectly influenced K uptake by crops through its effects on soil exchangeable Ca²⁺ +Mg²⁺ and Al³⁺, EK, and NEK, which accounted for up to 39% (RS) and 46% (NRS) of the variation in the K uptake by crops. Lime directly and negatively affected EK and NEK in NRS but had no direct effects on EK and NEK in RS.

Conclusions Our results suggested that lime-induced K uptake by crops was mediated by K^+ , Ca^{2+} , and Al^{3+} , and that lime application resulted in higher soil K availability.

Keywords Acidic soil \cdot Exchangeable Ca²⁺ \cdot Exchangeable K⁺ \cdot Lime addition rate \cdot Long-term fertilization \cdot Rhizosphere

Tianfu Han and Andong Cai contributed equally to this work.

Responsible editor: Zhenli He

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11368-018-2145-6) contains supplementary material, which is available to authorized users.

- ¹ National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- ² Environment and Food Security, College of Resources and Environmental Sciences and Centre for Resources, China Agricultural University, Beijing 100081, China
- ³ National Engineering and Technology Research Center for Red Soil Improvement, Jiangxi Institute of Red Soil, Jiangxi 331717, China

Huimin Zhang zhanghuimin@caas.cn