

ARTICLE

Received 27 Feb 2014 | Accepted 25 Jul 2014 | Published 4 Sep 2014

DOI: 10.1038/ncomms5799

Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands

Chao Wang^{1,2,*}, Xiaobo Wang^{1,2,3,*}, Dongwei Liu^{1,2}, Honghui Wu¹, Xiaotao Lü¹, Yunting Fang¹, Weixin Cheng^{1,4}, Wentao Luo^{1,2}, Ping Jiang¹, Jason Shi³, Huaqun Yin³, Jizhong Zhou^{3,5,6}, Xingguo Han¹ & Edith Bai¹

Higher aridity and more extreme rainfall events in drylands are predicted due to climate change. Yet, it is unclear how changing precipitation regimes may affect nitrogen (N) cycling, especially in areas with extremely high aridity. Here we investigate soil N isotopic values $(\delta^{15}N)$ along a 3,200 km aridity gradient and reveal a hump-shaped relationship between soil $\delta^{15}N$ and aridity index (AI) with a threshold at AI = 0.32. Variations of foliar $\delta^{15}N$, the abundance of nitrification and denitrification genes, and metabolic quotient along the gradient provide further evidence for the existence of this threshold. Data support the hypothesis that the increase of gaseous N loss is higher than the increase of net plant N accumulation with increasing AI below AI = 0.32, while the opposite is favoured above this threshold. Our results highlight the importance of N-cycling microbes in extremely dry areas and suggest different controlling factors of N-cycling on either side of the threshold.

¹ State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China. ² College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China. ³ Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma 73019, USA. ⁴ Department of Environmental Studies, University of California, Santa Cruz, California 95064, USA. ⁵ Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ⁶ State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to X.H. (email: hanxg@iae.ac.cn) or to E.B. (email: baie@iae.ac.cn).