STOTEN-21763; No of Pages 12

ARTICLE IN PRESS

Science of the Total Environment xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Conversion from rice to vegetable production increases N_2O emission via increased soil organic matter mineralization

Lei Wu^a, Shuirong Tang^a, Dongdong He^a, Xian Wu^a, Muhammad Shaaban^a, Milan Wang^a, Jingsong Zhao^a, Imran Khan^a, Xunhua Zheng^{b,c}, Ronggui Hu^{a,*}, William R. Horwath^d

^a College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

b State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

^c College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China

^d Department of Land, Air and Water Resources, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA

HIGHLIGHTS

GRAPHICAL ABSTRACT

- The impact of rice conversion to vegetable production on N₂O emission was studied.
- Rice paddy conversion to vegetable production dramatically increased N₂O emissions.
- N₂O emissions from converted vegetable field were highest in the first year.
- For converted vegetable fields, N₂O fluxes were positively related to CO₂ fluxes.
- SOM mineralization contributed to N₂O emission from converted vegetable field.

ARTICLE INFO

Article history: Received 24 September 2016 Received in revised form 8 January 2017 Accepted 8 January 2017 Available online xxxx

Editor: Elena Paoletti

Keywords: Soil N₂O emission Land management change Inter-annual variation Organic matter mineralization

ABSTRACT

The conversion from rice to vegetable production widely occurs in China. However, the effects of this conversion on N₂O emission and the underlying mechanisms are not well understood. In the present study, 12 rice paddies (R) were selected and half of them converted to vegetable fields (V) with the following treatments: rice paddies without N-fertilizer (R-CK), rice paddies with conventional N-fertilizer (R-CN), converted vegetable fields without N-fertilizer (V-CK), and converted vegetable fields with conventional N-fertilizer (V-CN) in a randomized block design with 3 replicates. N₂O emissions were measured with static chambers from December 2012 to December 2015. Within each V-CN plot, a root exclusion subplot was established to measure soil heterotrophic respiration (CO₂ effluxes), a proxy for soil organic matter mineralization. Conversion of rice paddies to vegetable production dramatically increased N₂O emissions. The three-year cumulative N₂O emissions were 0.59, 1.90, 55.50 and 160.14 kg N ha $^{-1}$ for R-CK, R-CN, V-CK and V-CN, respectively. The annual N₂O emissions from vegetable fields ranged between 5.99 and 113.45 kg N ha⁻¹ yr⁻¹, with substantially higher emissions in the first year. N₂O fluxes from V-CN were significantly and positively related to CO₂ fluxes and inorganic N concentrations. The linear relationship between natural logarithms of N₂O and CO₂ fluxes was stronger and the regression coefficient higher in the first year, showing the dependence of N₂O on soil organic matter mineralization. These results suggest that soil organic matter and N mineralization contributes significantly to N₂O emission following conversion of rice paddies to vegetable production.

© 2017 Elsevier B.V. All rights reserved.

* Corresponding author.

E-mail address: rghu@mail.hzau.edu.cn (R. Hu).

http://dx.doi.org/10.1016/j.scitotenv.2017.01.050 0048-9697/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Wu, L., et al., Conversion from rice to vegetable production increases N2O emission via increased soil organic matter mineralization, Sci Total Environ (2017), http://dx.doi.org/10.1016/j.scitotenv.2017.01.050