Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Carbon budget and greenhouse gas balance during the initial years after rice paddy conversion to vegetable cultivation

Lei Wu^a, Xian Wu^a, Shan Lin^a, Yupeng Wu^a, Shuirong Tang^a, Minghua Zhou^b, Muhammad Shaaban^a, Jinsong Zhao^a, Ronggui Hu^{a,*}, Yakov Kuzyakov^{a,c,d,e}, Jinshui Wu^f

^a College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

^b Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, China

otontial

Rice padd

^c Department of Soil Science of Temperate Ecosystems, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany

^d Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia

e Agro-Technology Institute, RUDN University, Moscow, Russia

^f Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China

HIGHLIGHTS

GRAPHICAL ABSTRACT

- N fertilized rice paddy soil sequestrated $1.14 \text{ Mg C ha}^{-1} \text{ yr}^{-1}$.
- · Conversion of rice paddy to vegetable cultivation led to substantial soil C losses.
- Low C input and fast decomposition explained C loss after land-use conversion (IIIC)
- The GWP (C loss, CH₄ and N₂O) strongly increased in the first year after LUC.
- It is especially critical to consider C and GHG balance in the first year after LUC.

ARTICLE INFO

Article history: Received 24 November 2017 Received in revised form 20 January 2018 Accepted 20 January 2018 Available online xxxx

Editor: Jay Gan

Keywords: Land-use conversion Net ecosystem carbon budget CH₁ N_2O Greenhouse gas balance

ABSTRACT

Rice paddy conversion to vegetable production is a common agricultural practice driven by economic benefits and shifting diets. However, little is known on the initial effects of this land-use conversion on net ecosystem carbon budget (NECB) and greenhouse gas (GHG) balance. Annual NECB and emissions of CH₄ and N₂O were measured from a native double rice cropping system (Rice) and a vegetable field recently converted from rice paddy (Veg) under no nitrogen (N) fertilization (Rice- N^0 and Veg- N^0) and conventional N fertilization (Rice- N^+ and Veg-N⁺) during the initial four years upon conversion in subtropical China. Land-use conversion from rice to vegetable cultivation led to substantial C losses (2.6 to 4.5 Mg C ha⁻¹ yr⁻¹), resulting from strongly reduced C input by 44–52% and increased soil organic matter mineralization by 46–59% relative to Rice. The magnitude of C losses from Veg was highest in the first year upon conversion, and showed a decreasing trend over time. N fertilization shifted rice paddy from a slight C source in Rice-N⁰ ($-1.0 \text{ Mg C ha}^{-1} \text{ yr}^{-1}$) to a significant C sink in Rice-N⁺ (1.1 Mg C ha⁻¹ yr⁻¹) and alleviated the impact of land-use conversion on C loss via increased C input from higher crop productivity. Land-use conversion greatly increased the global warming potential (GWP) from Veg by 116-395% relative to Rice in the first year, primarily due to increased C losses and N₂O emission outweighing the decreased CH₄ emission. However, the GWP did not show obvious difference between Rice and Veg in the

Vegetable field

Corresponding author. E-mail address: rghu@mail.hzau.edu.cn (R. Hu).