SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • RESEARCH ARTICLE

Organic amendment increases soil respiration in a greenhouse vegetable production system through decreasing soil organic carbon recalcitrance and increasing carbon-degrading microbial activity

Haoan Luan^{1,2} · Wei Gao³ · Shaowen Huang¹ · Jiwei Tang¹ · Mingyue Li³ · Huaizhi Zhang¹ · Xinping Chen² · Dainius Masiliūnas⁴

Received: 30 December 2019 / Accepted: 12 April 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Purpose Recent works have shown that fertilization has an important influence on soil respiration (Rs); however, the underlying mechanisms involved in regulating Rs in greenhouse vegetable production (GVP) systems remain unclear.

Materials and methods Samples from six kinds of soils that were amended with different fertilization patterns (8 years) were incubated for 36 days to determine soil microbial community (PLFA), enzyme activities, soil organic C (SOC) quality (¹³C NMR), and Rs in a GVP system in Tianjin, China. Treatments included 100% chemical N (CN) and different substitution rates of CN with manure-N and/or straw-N.

Results and discussion Compared with 100%CN treatment, organic amendment strongly promoted microbial (e.g., fungi, bacteria, and actinomycetes) growth, enhanced the majority of C-degrading enzyme activities, affected SOC chemical composition with increasing O-alkyl (labile) C and reducing aromatic (stable) C, decreased SOC recalcitrance, and enhanced Rs. Redundancy analysis indicated that variations in microbial community and SOC chemical composition were closely linked to light fraction organic C (LFC) and readily oxidizable C (ROC), respectively. Further, structural equation modeling and linear regression analysis revealed that SOC recalcitrance (negative effects) and C-degrading enzyme activities (positive effects) together mediate Rs rates; meanwhile, microbial community can indirect affect Rs rates through altering C-degrading enzyme activities.

Conclusions Agricultural soil abiotic properties (mainly labile C fractions, i.e., LFC and ROC) are altered by adding organic resources (i.e., manure and straw), the changes of which can promote soil microbial growth, enhance C-degrading microbial activity, and reduce SOC recalcitrance, and in turn accelerate Rs in GVP systems.

Keywords Soil respiration \cdot Soil organic C quality \cdot Microbial community composition \cdot C-degrading enzyme activity \cdot Greenhouse vegetable production

Responsible editor: Yanzheng Gao

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11368-020-02625-z) contains supplementary material, which is available to authorized users.

Shaowen Huang huangshaowen@caas.cn

> Haoan Luan luanhaoan@163.com

- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- ² Center for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China
- ³ Tianjin Institute of Agricultural Resources and Environment, Tianjin 300192, China
- ⁴ Laboratory of Geo-information Science and Remote Sensing, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands