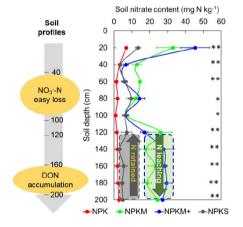
Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain

Xiapu Gai^a, Hongbin Liu^a, Jian Liu^b, Limei Zhai^a, Hongyuan Wang^{a,*}, Bo Yang^a, Tianzhi Ren^c, Shuxia Wu^a, Qiuliang Lei^a


^a Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ^b School of Environment and Sustainability and Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada

^c Department of Science and Technique Management, Chinese Academy of Agricultural Sciences, Beijing, China

HIGHLIGHTS

GRAPHICAL ABSTRACT

- Soil organic C and total N contents were significantly enhanced after manure and straw added in the upper 20 cm.
- High nitrate-N contents found in deeper soil associated with manure addition may lead to a greater N leaching risk.
- Nitrate-N contents did not increase in deeper soil applied with straw N, indicating retention of NO₃⁻-N in the soil.
- In North China Plain, nitrate-N is readily to lose from the 40–100 cm layer of fluvo-aquic soil.

A R T I C L E I N F O

Article history: Received 21 July 2018 Received in revised form 20 September 2018 Accepted 20 September 2018 Available online 22 September 2018

Editor: Jay Gan

Keywords: Manure application Straw incorporation Residual nitrate-N Long-term experiment Nonpoint source pollution

ABSTRACT

The effects of long-term animal manure application and crop straw incorporation on the migration of carbon (C) and nitrogen (N) deep into the soil profile and the associated N leaching risk in particular have not been thoroughly elucidated to date. Soil profile samples were collected from depths of up to 200 cm from the following four treatments in a 27-year field experiment on the North China Plain: N + phosphorus (P) + potassium (K) fertilizers (NPK), NPK + 22.5 t ha⁻¹ swine manure (NPKM), NPK + 33.7 t ha⁻¹ swine manure (NPKM+) and NPK + straw incorporation (NPKS). The results revealed that long-term manure application and straw incorporation significantly enhanced the soil organic C (SOC) and total N (TN) contents in the upper 20 cm and that this effect was weaker in the deeper soil layers (P < 0.05). Residual nitrate-N (NO₃⁻-N) contents at 0 to 40 cm and 120 to 200 cm in the NPKM and NPKM+ were 4-16 and 2-9 times higher than those in the NPK and NPKS, respectively. These results indicated a greater potential for N leaching from manure addition and a higher propensity for NO₃⁻-N leaching out of the 40-100 cm soil layer. Pearson relationship analysis demonstrated that NO₃⁻N content was clearly affected by SOC and dissolved organic N (DON) contents along the soil profile (20–200 cm), implying that the higher residual NO₃⁻-N contents in the deeper soil from manure addition were partially attributable to the mineralization and nitrification of the downward SOC and DON. Interestingly, a low level of residual NO₃⁻N combined with negative mineralization in the 120–200 cm soil layers of the NPKS treatment was observed, suggesting that straw incorporation promotes soil NO_3^- -N retention. Thus, we

* Corresponding author.

E-mail address: wanghongyuan@caas.cn (H. Wang).